

このたひ

言算用 MOS LSE
シスニム 及び請語の故底的厷解折を行たいましたので挂各いたくきす。

〔1〕演算機能

G．）使用演算キー

指数表示（一99～＋99）されていたがは应及型を志向した
 ものは，常に ODF，又は UNF，

君かれたデータを10進度数に変換可るキーを持ている。
（例） 10 度 20 分 30 秒 $=10,341666$

（f．）キーの使用该
12．3゙をおめたいとき
12．3（ay 7 とすれは結果砍
くる。但し指数として小数部を持つデタを入れたとき演算不能とこり ODF界不をする。 又指数に整数し狩に限られる。
（9）［可キーにおいて，$x \geqq$ のは䭪会はフローの简略くの為 ODF素示をする。
［2］回路界成概榙

（b）アター…1 1 進と 16 進の如堿筧の可能な一般的あシリアル ディムくドアダー。
（c）レジスタ… 48ビット 6本
計膖として6本 全てのレシャタを便用する。
（d）ステック゚・カアニタ…
の如くに
彗なり，＋1 可能な，ステップカつ二タ8ビットを用いて ROM 队トレスを指定させる。／ページ 256 アトしスとして
 レヒスクを 1 ビット掕つ。
（e）ジャッジ

（ii）ビットのキャリーバローではつく，ディシュット笔待のキャリー・ボロー
以上2通りあり ROM出力のリ＂判定をせな＂という

 スキップする。徒かって，棲筷時間としては，スキップした場合 も，なっり场会も同一となる。
（f．）ジャンプ
（i）舞条华ジャニプ
（ii）杀件つきシャップ
（iii）サブルー・チンジャニプ
大別すると以上3遍り。詊しくは，（i）につりて，改ページを するものとしたりものとがある。ヌ，（iii）について，アトレス，スタック
 とがある。更新しないものについては，サブルーチン，エンド会令
の次のアトとスはサゴルーチン，ジャニプを行なった以前の

（9．）スイープ・レジタ… 4ビットのレシェスタ．特にディジットタアムの

［3］ROM 出力詳細
出力ビット数は16．B1～B16 と名标をつける，
（a．）48ビット1本のダイナミックシントレエシスタには数值デタ
各ディジゥトタイムで区かさめて，格劀されている。どのデタを レジスタ内から取り出してきて，処㻏するのかを壁定する為に放ノ表にある様に，アダーへの読込みタミミング㷌呂を，作製する。 この苚に＂B1＂B2＂，B4＂，を恵用に便い，＂B3＂ なび他の出力を信号作製に終ませる。
（b．）シャッシラ（条件うきシャッンプ）の際，キャリー，ボローがみたら スキップシャニプをするのか，呂の遮かのかを仭定する事に＂B3＂ を用いる。＂B3＂は僙み入みタイミング隹思作繁にも用いる。
（例）$\quad B 3=Q$

$$
B 3=1
$$

（C）加诚切揬。 $B 5=\&$ ヌは $B 5=1$ の場合なも $B \|=Q, B R=1$ ならば加算，上記以外のとき堿算，
（d）レランスタ交換，澳算吅捚，を6本のレシスタ全てに行なわ せる为，レジスターアター間に，レシスタ進択ケートを置いて
 ＂B／5＂のよビットを类用している。
指定する為に，ステップ・カつンタにロード，イミデミート，される。
 によって作られているのな画一的な説明になきない。

命令一䔩を次ページに示す。

（位）$B 3=1$ そあっても，$\left.[x \pm y \rightarrow x],[x \pm 1 \rightarrow x],\langle x-y\rangle, x \pm B_{5-8}\right\rangle$ の命令実行の際には $B 3^{\prime}=Q$ と等体。 $B 3=Q \rightarrow B 3^{P}=Q$
 する為，特に定めちれた上記以外のコートによって，＂X＂タイミング信号を発生させる。
全てのジャンプ命令の場合 B1~B8 ROM出力は, ロードイミティスート
に用いられる為常に"Xcc"タイミング信見を発生させる。
デタカークトタイミニン・鳘娄

$$
\text { 事 } 1 \text { 表 }
$$

事了表 命 分 一䫓（2）
（f）ジャワジの具体施）
（i）

12日 が壁択され桁あにキャリーについてのみのシャッぞ あるのて $D C_{2}$ そ6 となる。さらに $B 3=8$ ひあるので キャリー・ノーでスチップ可る。

（ii）

$B / \sim \beta 16$ まみ $/ / 1 \theta \theta \theta / 1 / 1 \otimes 1 / \theta 11$ とする

 あるのでキャリー・イさス でスキップする。
 する日納に国いられる
（g．）アドレス・ステップか县体㴻

$078 \backsim S \rightarrow 187$ ク9－スタッフ・レシスタ（スタック・レシスタば

079 \square
$\rightarrow \rightarrow ル-4=\left\{\begin{array}{r}187 \square \\ \text { SGE }\end{array}\right.$
 を我用（ている。 この為，サフルーが，リングーシ5
 1ページに改ページ。87ーステップからごには ロートイざごニート。
 79—ステックロクアータ，\＆ペーラに改ページ。

命分として，使井される事になる。
$004 \quad \mathrm{JS} \mathrm{\rightarrow 103}$
$005 \square$
$006 \square$

JSS命令ひはスタックレシスタとして，FCc を健わす

 スタックレシスタ内寝となリ，アドス・ステッフの㧼るな。次の様に者る。

$$
\theta 04 \rightarrow 183 \cdots \cdots \rightarrow \theta 05 \rightarrow 006 \rightarrow 103 \cdots \cdots \rightarrow 005 \rightarrow 0
$$

$1 \theta \pm \mathrm{mn}$
XSA
$\rightarrow 1 A R Q$
左の様に佩用性を持たせる为

いる事から
ては，

淚すせているオパレーションを，マイクロ コンピュータでは 从カート命令となり，
目つ，SRE という／クト～命命も，

ヌ．マイククロコンピュータに
つても言之るがフォートラン・プロクシムの機にサブルーチンコール発

わけではないので，サフールーチントよるプログラム・スニッが或れは非常に効興讨大きい）。
（h）レシスタ杵成

又 POQ \rightarrow AREF，てもる。
（i）小数虽表法

 あるが ては（1）レシスタの本媇刦多い。 （2）キー・

（j）キーの入力佼
接続してある。キーヘカピンは18本，

キーエニコーターが内掂さ山ており，キーに応じて戠列信罗 かつくられる。 ハードうさアとしてばキーエンコーダー以外に
 キーの螃参，キーを離したときのチャタリニグ（ハウニシニグ，まは

考向する＂ハートを掟力波力させ，且つ，プロブラム・リフトを高能葷，
 キーの ONチャタリニグ，OFFチチャタリンク院过をリフトな行ない，さらに

 2惠押し院上，ロールオーバー機能はない。 は一菷した電由主義ひ會電を設計しておりアクセサリー的る におけのするこの，定間上不录々あると料断したものは，全て＂切る＂方㻌びある事がろががわれる。
［1 ］フローチャート．
巻末にフローチャートを付ける。
（1．．．…舞条件シャニプ

タイミングニーモニックについている办ノ素総照。
（a）キー・スタート・アNLスについて

 FKノは，同ーアルレスよりスタートレた㖟，アドに修館ルーチンに入リ

戻められたスタート番地から，雨スターさせている。
（b）似則實筑 フロー

 では，フローか
 フローを組えていたがこの すはここで記木する珵，特復のあるフローではないよろに思われる。

（c．）ルート演算フロー

石か筆箱倒で，実際に人間の豇で。
$12-1,12-2^{2}, 12-3^{2}, 12-4^{2}$

$$
=\frac{35.1}{12340}
$$

の㖕篗をさせ 自然数の自手が数の
なかで12以下ひあって12に一釆近い
ものに゙＂3＂それるとの因素を行なる。
ディシタル計算㙨ひは次の機る

$\frac{3}{65}$	$\frac{9}{34}$
$\frac{58}{781}$	$\frac{325}{908}$
$\frac{102}{702}$	$\frac{701}{199}$

壁リラする。

$$
\begin{aligned}
& 12-1=11, \quad 11-3=8, \quad 8-5=3, \quad 3-7=-4 \text { (木几-奄生) } \\
& \text { 1名回 } \\
& \text { 二小団 } \\
& \text { swil } \\
& \text { 4国量 }
\end{aligned}
$$

言えばットよりノを成算する事によって可能っちしわる。

（1）被㳑筑数を当初から与椖する。
 25，35…）2程目に1を加算可れは辛いといろ

特たせる。

この
かルート計算治は
750 ROM O

 ノを减簤する 4ビットのカウニターを内荿していた。ところが

 エEL—3300＂

行なっている。＝の元式については，在だにかいても

 ＂列る。
（ $1 . e^{\text {x }}$ 演等フロー
 なはバキ級数贯閉式を用いて，湓符を宾行している。
（参）$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+$
（ $-\infty<\infty<+\infty$ ）
$\ln x=2\left(a+\frac{a^{3}}{3}+\frac{a^{4}}{5}+\cdots \cdots\right) \quad a=\frac{x-1}{x+1} \quad(a<x+\infty)$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \cdots \quad(-\infty<x, \infty)$
$\infty=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \quad(-\infty<x<+\infty)$
$\tan x=x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{3}+\cdots \quad \quad\left(-\frac{\pi}{3}<x+\frac{\pi}{2}\right)$

二小のは，整数頳のあるデータを展南式に代入していくと，8行以上の

$$
\begin{aligned}
\operatorname{tup}(I+d) & =\exp (z) x \operatorname{elp}(d) \\
& =(2,718282)^{I} \times\left(1+j+\frac{d^{2}}{2!}+\frac{d^{2}}{3!}+\cdots \frac{d^{9}}{9!}\right)
\end{aligned}
$$

として埌算綡果をおがいる。
（e）［ain］［os］［tan］旗等フロー
代数式によって梓笙する。

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!} \quad\left(\cos \left(x-90^{\circ}\right)=-\sin x\right) \\
& \cos x=\sin \left(x-90^{\circ}\right) \\
& \tan x=\frac{\sin x}{\sqrt{\sin ^{2} x-11}} \quad\left(0^{\circ}<x<10^{\circ}\right) \quad \tan x=\frac{\sqrt{\frac{600}{} 2}-11}{\cos x} \quad\left(10^{\circ} \equiv x \leqq 90^{\circ}\right)
\end{aligned}
$$

要くるる。 これを辟ける為に，与之得る解度居，$-1440^{\circ} \leq x \leq 1440^{\circ}$

演等坒度をあげる参に，In（X）の計算なは，$X=x^{32}$ とおき

$$
\begin{aligned}
& \ln (x)=\ln \left(x^{32}\right) \\
& =32 \ln (x) \quad \text { とL, 展開式を㖕算し, } \\
& \ln (x)=32 \times 2\left(a+\frac{a^{3}}{3}+\frac{a^{5}}{5}+\frac{a^{7}}{7}+\frac{a^{9}}{9}\right) \quad 4 \text { (2 子. 常用敖数は } \\
& \log (x)=\log (e) \times 64(\ldots) \\
& =27.79485(\ldots) \text { として..................... }
\end{aligned}
$$

（g）演算精度について，

 は，浫算絠界の

下2桁を切り度てて啬示している。
演第槁度をあける雄に，
では，次の缶な处置きくている，
小数話に分け，小数部のみを屋㑲式でずわる。

 $10^{\circ} \leqslant x \leqslant 90^{\circ}$ とに发し，前者においては能 $x=\sin x$ とふるところ

演算回数の境加によって精度が換愿に落ちる事を考慮し $\cos x$ を淔接，ボめて，計笽をしている。
計算する為には，$a=\frac{x-1}{x+1}$ の垡を＂゙から離れた信にする，即ち
 る2乗髟きあれて，xに代入している。

$$
1111 .+0.999=1111.999
$$

＊1111。 とかる。（5／4機能なしとする）

$$
1111 \times 0.001999=
$$

涭勯小数卓の場含 $1111 . \times 0.001=1.111$ として誤羔か大きくでるが，指数方式では， $1.111 \times 10^{-3} \times 1.999 \times 10^{-3}=2.220 \times 10^{-3}$

 4唅5入という機能を持っているのかもしれない。）
（h．）履用式演算にーチン
実際に演算に用いている慮開式は次の三式できる。

$$
\begin{aligned}
& e^{x}=\left(x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!}+\frac{x^{8}}{8!}+\frac{x^{9}}{9!}\right)+1 \\
& \ln x=\left(a+\quad \frac{a^{3}}{3}+\frac{a^{5}}{5}+\frac{a^{7}}{7}+\frac{a^{9}}{9}\right) \times 64 \\
& \sin x=\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}\right)
\end{aligned}
$$

この三式の違りは，（1）階寨をつくるか，（2）奇数のみに漞算を

3卓に集約され，ジャッジによって，この振分けがてきれば
工式の括孤内の演範は，同ールーチンで実行可能とるる。
では，ふみアトレスで，このルーチンを作っている。
［5］まとめ
は，が開発した。8析滈動小槹㑒元式
高いものだけに限定し，演算，㝨示の简胳他の忥に演算椦磨を

先年
を発危して，安物家这用卓電の一䊩りを宣言して大反䭗を肁き起こし，他の電卓メーカーも これに追陵しよろと必至だ夘自社技遊では設計できす。NECなど， LSエメーかーの檪準品を使って，この場をしのごらとするメーカーばかりで， こ二当分。 の電卓業界におけるトップの座にゆるぎない ものとなるぶ さらに の南発によって，科堂持荇卓電分野にも，実用本意の安物攻勢を仕挂けてきたかけで，

