2.

3.

4.

uPD7720A/77P20 Design Manual

TABLE OF CONTENTS

SUMMARY DESCRIPTION . . . .

1.1 FeatuUres . « « o o + o o o o« »
1.2 Block Diagram . « « « o « o o &
1.3 Instruction Summary . . . . . .
PIN CONPIGURATION . & o o o o o o o o s @
2.1 Pin Identification. . . . . . .
FUNCTIONAL DESCRIPTION. « ¢ ¢ « ¢ ¢ o o« &«
3.1 Instruction ROM . « + « ¢« ¢« « &
3.2 Program Counter « « ¢« « « o« o &
3.3 Stack ¢ ¢ ¢ ¢ ¢ o o o e o e o
3.4 RM L ] L ] - . L ] L J L L ] L L ] L ] L ] L r
3.5 Data Pointer (DP) Register. . .
3.6 Data/Coefficient ROM. . « « « o«
3.7 RP (ROM Pointer). « ¢« « o o « «
3.8 Multiplier. . « ¢ ¢ ¢ ¢« ¢ & o «
3.9 K Register. « « o« o ¢ ¢ o o o @
3.10 L Register. +« « « o o« s o + o o«
3.11 M and N Registers . . « « « «
3.12 ALU . L ] L3 - - L] L 2 [ ] L ] * L] » . .
3.13 Accumulators (AccA, AccB). . .
3,14 SHIFT o ¢ ¢ o o o o o o o o o o
3.15 Flag Registers. « « « v « « &
3.16 Sign Register (SGN) . + « + «
3.17 Temporary Register (TR) . . « .
3.18 Status Register (SR). * o o o o
3.19 Parallel I/O POrt « « o« o o o &
3,20 DR (Data Register). « « « « o «
3.21 Parallel READ/WRITE Operation .
3.22 DMA Interface Logic . . + + + &
3.23 SI Register (Serial Input). . .
3.24 SO Register (Serial Output) . .
3.25 InterruptsS. « +« o ¢ o « o o o .
INSTRUCTIONS. L L ] - L . . . L ] L] * . L L] .
4.1 OP/RT Instruction . . « « « «
4.101 P-Select Field e o o o @
4.1.2 ALU FiEJ.do [ ] [ ] L ] L] L] L ] L]
4.1.3 ASL (Accumulator Select)
4.1.4 DPL Field. * * * L 2 L L] L
4.1.5 DPH-M (DPH Modify) Field
4.1.6 RPDCR Bit (RP Decrement)
4.1.7 SRC Field (Source) . . .
4,1,8 DST Field (Destination).
4.1.9 Instruction Timing . . .

4,2 JP Instruction. +« « « ¢ o + = =«
4.2.1 BRCH Field (Branch). . .
4.2.2 CND Field (Condition). .
4.2.3 NA Field (Next Address).

4.3 LDI Instruction « « « o« o « o o«

. [ ] L] . . o e o @ [ ] .« o+ o 0 L] e o [ ] L * o e o

e ® o o & o o o o o o (De o o o

i

" o . o e o e & L[] .« & & 0 L ] L ] L [ ] * @ e o e e

® & @& ® & & & o & s s (Te o & o

L] e o @ ” o e 9 o [ ] * o & ° o 9 ® @& & & ¢ ¢ o ¢ 0

[ ] *® O & 6 & & 4 e & ° o 2 o

¢ * o o

. @ & & ¢ ¢ ¢ & o 8 4 & s & 9 0 .

* ¢« & & & & & 4 8 & & B 2 e

* & & * 9 L ] L] e & o L ] . e o .

. [ ] .« o * o . o o ] L] L] . ¢ @ .

] L .

« . . [ ] ] L ] L ] e o L L e o L[ ] ¢ o o . .

L I 1 . L] . . & . . L . . .

L . @ L] * . * & e o & & & & s L * o . * o * o

L ] . . . L] . . e e 0 . . o . & .

0 @ @ ® ~N &= W

. o e o . *» @ o o e * o o o ° s 0 *» o ¢ o o o e o o

. L . . . L] . L] L] L] L] . L . L] L



-

4.3.,1 ID Field (Immediate Data).
4.3.2 DST Pield (Destination). .

5 [ ] TIMING L] L] L] L L] L] L L] L] [ ] L

:l Serial Data Timing.
.2 Reset Timing (RST).
3
-4

] * L ] L ]
L ] L ] L ] L ]
- L ] - L ]

Interrupt « « . «
I/0 vs. Instructions. .

6. TYPICAL SYSTEM CONFIGURATIONS « 4+ « o & ¢ o o

APPENDIX 1 ASSEMBLY LANGUAGE INSTRUCTION EXAMPLES
EXAMPLE A: Biquadratic Filter. . . .
EXAMPLE B: Sixty-four Biquad Filters .
EXAMPLE C: Transversal (FIR) PFilter. .
EXAMPLE D: 32-Tap Transversal Pilter .
EXAMPLE E: Use of Parallel 1I/0 . . . .
EXAHPLE F: 32-Bit Math e e o e e o o o

® o @ L] e o
® ¢ & o e o
e e o o e e

APPENDIX 2 OVERFLOW PROCESSING THEORY DISCUSSION.

e & & 9 o o

APPENDIX 3 SPI'S INTERNAL REPRESENTATION OF NUMBERS

LIST OF FIGURES
FIGURE NO.

BLOCK DIAGRAM . L] L] L] * L] * * L] * * L]
INSTRUCTION FIELD SUHHARY. . o

BLOCK DIAGRAM OF RAM AND DP CONNECTIONS.
M AND N REGISTER BIT ORGANIZATION. . .
ALU AND CONNECTIONS BLOCK DIAGRAM
1-BIT RIGHT SHIFT. .
1-BIT LEFT SHIFT . .
2-BIT LEFT SHIFT . .
4-BIT LEFT SHIFT . .

8-BIT EXCHANGE . . .
ACCUMULATOR FLAG BITS.

0 STATUS REGISTER BITS . . .
1 DATA REGISTER AND CONNECTIONS B
2 .

. ¢ @& & & 2

. L ] * o L] .
L] L] e o o . L] .

o

e @ & & @ @ ° @ & & ¢ o ¢

DRQ AND DACK/ TIMING . . .
SERIAL INPUT BLOCK DIAGRAM
SERIAL INPUT TIMING. . . .

.
WNhHFAULBWNHFHEMFEHEFEEFEFPOODNOAOMAEWNDEHWN
bW

SERIAL OUTPUT BLOCK DIAGRAM

K DIA

* @ o o ¢ ™Mo o o e e o o

SERIAL OUTPUT TIMING . . .

e o o o o o (Jo ¢ o o o o o

OP/RT INSTRUCTION FORMAT ., .

JP INSTRUCTION FORMAT. . . . . .« .
JP ASSEMBLY LANGUAGE INSTRUCTION FORMAT.
LDI INSTRUCTION FORMAT . . « « & o « &

L ] [ ] L) L] [ ] L] [ ] [ ] L] [ ] L L ] L] - . L] . - [ ] L]

[ ] L L L L] L L ] L ] L ] L] . L ] L * * L ] * * L .

NG PP WWWWWWWWWWWWWWWW e -

. L L . L [ ] L] . . L] L] L ] . L ] L] . L ] L d L ] .

ii

G

LDI ASSEMBLY LANGUAGE INSTRUCTION FORMAT

e o o e o * E' * @ e ¢ & ® & & @ 9

ASSEMBLY LANGUAGE INSTRUCTION FORMAT ARITHH

L] L * L L J * L ]

e o ® o .« o L ]
*® @ ¢ e o o o
* o * @ @ o o
e & & & & L J

e & & e @ ® ¢ | o o @ & o+ @ ¢ * " & & 8 5 & & s ¢ 2

n' L J L J L ] L] L J L ] * . L - - * - [ ] * L] . -
e o 8 o o o o %- @ ® ® ® & & o & & 2 o o & ° & o 8 o
® & & 8 * & & * W e e ¢ & & & 2 4 2 e+ & o s & e &

e o o o o o o [Mle @ o » & o ¢ ¢ o ¢ o o & ¢ o o ¢ & o

41
41

42
42
42
42

42



TABLE NO.

[N S S P
® o o o @ o ® s o ® o

OO~ WN K-

BIQUAD FILTER SIGNAL FLOW & TRANSFER FUNCTION,
MODIFIED BIQUAD FILTER SIGNAL FLOW DIAGRAM ,

MODIFIED BIQUAD FILTER FLOW CHART. . .
32-TAP TRANSVERSAL FILTER SIGNAL FLOW,

LIST OF TABLES

R/W CONTROL LOGIC:. o « o o o o o
P-SELECT FIELD * o e @

ALU FUNCTION AND FLAG OPERATION.
ACCUMULATOR SELECT FIELD . . . .
DATA POINTER LOW FIELD . . .
DATA POINTER HIGH MODIFICATION FI
ROM POINTER DECREMENT FIELD, ., .
SOURCE FIELD SPECIFICATIONS. . .
DESTINATION FIELD SPECIFICATIONS
BRANCH FIELD ¢ 4+ o ¢ ¢ ¢ ¢ ¢ o &
CONDITION FIELD: ¢ + ¢ o o o o o

L

e & o ¢ o [TJe ¢ s & o
¢ o o o o De o s o o
® & & ® & 2 @ ¢ & ® &

iii

s o ® © & & o L] ¢ & *
® o ¢ o * & @ * ¢ ® L]

L J L ] L] *
* L] * &

* * &

47
47
48
53



1. SUMMARY DESCRIPTION

Fabricated in high-speed NMOS, the uPD7720A Signal
Processing Interface (SPI) is a complete 16-bit microcomputer on
a single chip. ROM space is provided for both program and
data/coefficient storage, while the on-chip RAM may be used for
temporary data, coefficients, and results. The uPD7720A is a
masked-ROM device (user code and data are programmed into the
instruction and data ROM areas during fabrication by NEC)., The
uPD77P20 is a UV-EPROM version of the uPD7720A that is
functionally identical to the uPD7720A {(power requirements are
different). The uPD77P20 is used for prototyping and for small
production runs, Computational power is provided by a 16-bit
Arithmetic/Logic Unit (ALU) and a separate 16 x 16-bit fully
parallel multiplier. This combination allows the implementation
of a "sum of products” operation in a single 250 nsec instruction
cycle. In addition, each arithmetic instruction provides for a
number of data movement operations, as well as pointer
modifications, to further increase throughput. Two serial I/0
ports are provided for interfacing to codecs, successive-
approximation A/D converters, and other serially-oriented devices
while a parallel port provides both data and status information
to a conventional microprocessor for more sophisticated
applications. Handshaking signals, including DMA controls, allow
the SPI to act as a sophisticated programmable peripheral as well
as a stand alone microprocessor.

Development tools consist of an assembler, a simulator, an
in=-circuit emulator (EVAKIT), and the EPROM version, uPD77P20.
See the corresponding manuals and data sheets for more detailed
information on these tools,

APPLICATIONS Digital Filtering
High Speed Data Modems
Fast Fourier Transforms (FFT)
Speech Synthesis and Analysis
Dual-Tone Multi-Frequency (DTMF) Transmitters/Receivers
Equalizers
Adaptive Control
Numerical Processing

PERFORMANCE Second Order Digital Filter (BiQuad) 2.25 us

BENCHMARKS u/A Law to Linear Conversion 0.50 us
SINE/COS of Angles 5.25 us

FFT: 32-Point Complex 0.7 ms

64-Point Complex 1.6 ms



1.1 Features
Fast Instruction Execution - 250 ns/8 MHz Clock
16-bit Data Word

Multi-operation Instructions for Optimizing Program
Execution

Large Memory Capacities:

Program ROM 512 x 23 bits
Data/Coefficient ROM 510 x 13 bits
Data RAM 128 x 16 bits

Fast (250 ns/8 MHz) 16 x 16 Parallel Multiplier with
31-bit Result

Four-Level Subroutine Stack for Program Efficiency

Multiple I/0 Capabilities
Serial - Separate input and output (8 or 16-bit)
Parallel - 8-bit bus
DMA

Compatible with most Microprocessors, Including:
uPD8080
uPD8085
uPD8086
uPD780 (280)

+5V Power Supply
NMOS Technology
28-pin DIP Package

Refer to the uPD7720A/P20 data sheet for AC, DC, and
timing specifications.



1.2 Block Diagram

R —  owa | r-F—-ﬁﬂi
i~ ' 2 s ™
ona RAM M
Instruction 128nte |
AOM Murtioter Ltfj
51222 ] .
Low | rgn ﬁ 30 10
PC r-lrJLscg
Al
[ il T ¥
o ? | L I e
T T
] v L S
-y=" J > : <4 -
o B 3 i ki —
3 - > M o (= on Comrts Lagic
E saw | | m | X s b 1Y
- I ._4—}
3 a0
s|sjclz}|o E—
rma 41514141112 . - AR|ARN m
s|s|clz|O '87 erd stox'ts A * L]
fmbioislsis|¥|v - 5,
::: ‘e 110 ACCA - L_t-», r_ij
NT i ]
vo— | i
GNO —= trrtrrupt
The primary bus (unshaded) makes a data path between all of the
registers (including 1/0), memory, and processing sections. This bus

is referred to as the IDB - Internal Data Bus.

The multiplier input

registers K and L can be loaded not only from the IDB but alternatively
(via dark buses) directly from RAM to the K register and directly

from data ROM to the L register.

OQutput from the multiplier in the M

and N registers are typically added (via the shaded buses) to either
accumulator A or B as part of a multi-operation instruction.




1.3 Instruction Summary

The SPI has three instruction types:

l. Load Immediate .
2. OP/RT (multi-operation)
3. Jump - (conditional, unconditional, or call)

Instructions are described in detail in a later section.

1, The LDI (Load Immediate) instruction loads a 16-bit value
(immediate data) to one of thirteen possible destination

registers.
2. The OP/RT multi-operation instruction can perform
(optionally) any or all of the following operations in a single
instruction:
a) move data from one register to another
b) implement an ALU operation on either accumulator, using
an operand from one of four inputs (including the data
being moved by a))
c) modify lower four bits (column pointer) of data RAM
pointer
d) modify high three bits (row pointer) of data RAM
pointer
e) decrement data/coefficient ROM pointer
£) return from subroutine

While any or all of the above is happening, the contents of two
16-bit registers are multiplied, and their 31l-bit product is
placed in the multiplier output registers.

3. The Jump instruction has three variations:

a)
b)
c)

unconditional jump
conditional jump (32 types of conditions)
subroutine call



OP/RT

JUMP

FIGURE 1.3

INSTRUCTION FIELD SUMMARY

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 |15 - 1o} » 0 DsT
22 21 20 19 1B 17 16 15 14 13 12 11 10 ¢ B 7 6 5 4 3 2 1 O
R
P A P
00101 |seLecT ALU f OP_L | DOPHM 8 SRC osT
R
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
10 BRCH CND NA J(”,/”;j’




2. PIN CONFIGURATION

ne
TATRC
pra
po OJ
P C
DQC
0,0
02 C
Dgu
ch:
s
DQE
07 O

GND [

D ® VN OO U s LN

uPD7720A

3

27
26
25
24
23
22
Pi)

19
18
17
16
15

= Vee
[J Ao
=
mh.i.
(] WH
] soRa
] so

m ]

[ SOEN
C1STEN
] sck
(1 iNT
JRST
JcLK




2.1 Pin Identification

NAME
NC/Vpp

———

DACK

1/0 PUNCTION

No Connection /Vpp For uPD77P20

Lo

1

i

E

| DMA Request Acknowledge.

| Indicates to the uPD7720 that the
| Data Bus is ready for a DMA

| transfer. OACE=0 ias equivalent

{ to Ag=0 and T3=0
|
|
|
I

|

I

!

DRQ DMA Request signals that the
uPD7720 is requesting a data

trangsfer on the Data Bus.

5 Pgs P1 0 Pg, Py are general purpose output

control lines.

§~13 | Dg-Dq 1/0 Tristate | Port for data transfer between
the Data Register oc Status

Register and Data Bus.

w

15 CLK b ¢ Single phase Master Clock input

16 BST I Reset initializes the uPD7720
1nt|rn=l logic and sets the
PC to 0.

17 INT I

Intecgupt. a low to high
transition on this pin will (if
1 interrupts are enabled by the

| { | program) execute a call
inatruction to location 100H.
(Bdge sansitive)

18

Serial Data Input/Output Clock.
A gerial data bit is transferred
when thia pin is high,

Serial Input EBnable. Thias line
enables the shift clock to the
Serial Input Register.

19 SIEH

20 SOEN Serial Output Enable. This pin
enables the shift clock to the

Serial Output Register.

21 sI Serial Data Input. This pin
inputs B8 or 16 bit serial data
words from an external device

such as an A/D converter.

22 Serial Data CQutput. This pin
outputs 8 or 16 bit data words
to an extecnal device such aas an

D/A converter.

23 SORQ Serial Data Output Request.
Specifies to an external device
that the Serial Data Register

| bas been loaded and is ready for
output. SORQ is reset when the
eptize 8 or 16 bit word has been

transfecced.

e o e s S e A — —— — —— . f—— S S {———
e e n . A T ——— —— At T S S S St i S . S —

3
o

24 Write Control Signal writes the
contents of data bus into the

Data Register.

25 Read Control Signal. Enables an
output to the Data Port from the

Data or Status Register.

26 [s£:3 Chip Select. Enable data
transfer with Data or Status

Port with RD or WH.

Select Data Register for
Read/Write (low or Status
Register for read (high).

+5V POWER

27

e e e . . e e ot . . —— e Bt i S S e S S S T —— —— . S S P b e St e S i S S o o W} S T

-
———— g s A S T S S W R — T T

l 28




3, FUNCTIONAL DESCRIPTION

3.1 Instruction ROM

The 512 x 23 bits of mask-programmable instruction ROM are
addressed by a 9-bit Program Counter which can be modified by an
external reset, interrupt, call/jump, or return instruction.

3.2 Program Counter

The Program Counter (PC) is a 9-bit binary counter which
functions as follows:

PC is incremented by 1 at each instruction fetch,
The contents of the address field (NA field) of any of the
following instructions is transferred to PC when executed:

* JMP instruction

* Conditional jump instructions (if condition is met)

* CALL instruction (and PC is pushed on to the stack)
The contents of the STACK is transferred to PC when an RT
(subroutine or interrupt Return) instruction is executed.
The interrupt address (100H) is transferred to PC whenever
an interrupt condition occurs, and the PC is pushed onto
the stack.

3.3 Stack

The SPI contains a 4-level program stack for efficient
program usage and interrupt handling. The stack is a 4 x 9-bit
LIFO register (last in first out). It stores the return
addresses for subroutines and interrupts. The return address is
read out of the stack and transferred to PC when the Return
instruction is executed. Subroutines (or interrupts) may not be
nested more than four (4) levels deep because the return
addresses are pushed out the bottom of the stack and lost,

3.4 RAM

The Data RAM has 128 1l6-bit words and is addressed by a 7-
bit Data Pointer (DP) register. The DP has addressing features
that operate simultaneously with arithmetic instructions so that
no added time is taken for address modification.

The Data RAM is best thought of as two blocks of memory,
each with four rows of 16 words, as shown in Figure 3.1l. The DP
register's MS bit (DP6) selects which block will be input/output
from the MPX. DP5 and DP4 select the row within a block to be
accessed and DP3-DP0 (DPL) select the value (or column number)
within the row. In addition to (DP6 = 1) being able to route its
data through the MPX, the high order block may also send its data
directly to the K register (Multiplier Input Register) via its
own dedicated bus as part of an OP/RT instruction. To do this
requires the use of the @KLM Destination, in which the L register
is loaded through the IDB (Internal Data Bus), from the Source
register specified in the instruction.



FIGURE 3,1 BLOCK DIAGRAM OF RAM AND DP CONNECTIONS

OP,
DP,
o]
OP,
DP,

OP,

DP,

INTERNAL
omes DATA
BUS (1.D.8.)

A Buffer

DP,-DP,
—
RAM owme RoW() e RAM
BLOCK BLOCK
<— Row1 ——-
4x18 - RoW2 eevsmme- 4x18
WORDS WORDS
s ROW3 enmsme J
-u _
High RAM Low RAM (DPg=g@)
(DPg=1)
= ROW SELECT
= ROW ¢
= ROW1
= ROW 2
= ROW3

ALU

| W/R Buffer

&V

&MULT

PINPL

Bus

Separator

Bus
Separator




3.5 Data Pointer (DP) Register

The Data Pointer is a seven-bit register that specifies the
RAM address. The three higher bits are referred to as DPH and
the four lower bits as DPL.

When data is loaded from the internal bus to DP, the lower
seven bits are input and the nine higher bits are ignored (IDB is
a 16-bit bus). When data is output from the DP to the internal
data bus, the seven lower bits contain the DP value, and the nine
higher bits of the data bus are filled with zeroes.

The Data Pointer can be modified as part of an OP/RT
instruction as described below.

The three higher bits of the DP can be modified by being
XOR'ed with the three bits in the DPH-M field of the OP/RT
instruction (M0 through M7 in assembly language mnemonics).

EXAMPLE: DP/BIT 654 3210 DRP/BIT 654 3210
DP = 000 XXXX DP = 001 XXXX

Ml = XOR 001 Ml = XOR 001
DP = 001 XXXX DP = 000 XXXX

The four lower bits of the DP can be modified by the DPL
field of an OP/RT instruction in the following ways:

1. Increment DPL - MODULO 16 (0-15) = DPINC
2. Decrement DPL - MODULO 16 (15-0) = DPDEC
3. Clear DPL = DPCLR
4. No Change (NOP) = DPNOP

Both parts of the DP can be modified simultaneously by an
OP/RT instruction, however these operations are ignored if a DP
load from the Internal Data Bus (IDB) is specified as part of the
same instruction (Destination = €DP),

The DP value resulting from modifications as part of an
OP/RT instruction is not implemented until the end of the
instruction cycle, and therefore does not affect the DP value
used as part of that same instruction, but is effective for use
by the next instruction.

For more detailed information on the use of the DP
modifications in practical applications, see Appendix 1.

3.6 Data/Coefficient ROM (510 x 13 bits in uPD7720A, 512 x 13
bits in uPD77P20)

The Data/Coefficient ROM is organized as 510 x 13 bits and
is addressed by a 9-bit ROM pointer (RP) Register. This ROM is
ideal for storing any coefficients, conversion tables, and
constants that may be needed for processing. All ROM locations
may be used with the exceptions of addresses 0 and 1, which are
used for test patterns in the uPD7720A masked-ROM version.
Locations 0 and 1 may be used (512 x 13 bits total) in the
uPD77P20 EPROM version. However, use of these locations is
discouraged to avoid conflict if and when the code is committed
to masked-ROM.

The ROM's output buffer (RO) data may be routed two places.

10



First, it may be routed to the Internal Data Bus (IDB), using the
RO source specification in the MOV portion of an OP/RT
instruction, through which it may be sent to any of the possible
destinations. Secondly, it may be routed directly to the L
register (multiplier input) via a special bus by use of the @KLR
destination specification, in either the MOV portion of an OP/RT
instruction, or as the destination of an LDI instruction. 1In
this case, the K register (multiplier input) is loaded through
the IDB from either the specified source register or the
immediate data field of the LDI instruction. 1In either case, the
13 bits are placed in the higher order bits of the output word
(l6-bit wide data word) and the lower order 3 bits are always
Zero.

3.7 RP (ROM Pointer)

The ROM Pointer is a 9-bit register that specifies the Data
ROM address. It is used in much the same manner as the DP
register.

When data is input to the RP register from the internal data
bus (IDB), the nine lower bits are stored and the seven higher
bits are ignored. When data is output from the RP register to
the internal data bus, the RP data fills the lower nine bits of
the data bus, and zeroes are output to the seven higher bits.

The RP register can be decremented as part of an OP/RT
instruction by the use of the RPDCR field. The RP value that
results from modification as part of an OP/RT instruction is not
implemented until the end of the instruction cycle, and therefore
does not affect the RP value used as part of that same
instruction, but is effective for use by the next instruction.
The RP modification is ignored if a value is being input from the
IDB as part of the same instruction (Destination = @RP).

3.8 Multiplier

This is a fully parallel multiplier that uses the secondary
Booth algorithm. It multiplies two 1l6-bit words (taken from the K
and L registers) to produce a 31-bit product. The input words
and output value are all two's complement; the inputs are (sign
bit) + (15-bit data) and the output is (sign bit) + (30-bit
data). For more detailed information on the internal
representation of numbers in the SPI (especially in the
multiplier), see Appendix 3,

The 31-bit output value is output as follows: the sign bit
and 15 most significant data bits are output to the M register,
and the 15 least significant data bits are output to the N
register, left justified (a 0 is placed in the LSB of the N
register). A multiply is done every instruction cycle.

3.9 K Register
The K Register is a 16-bit register that holds either the
multiplier or the multiplicand to be input to the multiplier,

The K register can be filled with data that is output to the
internal data bus (IDB) from some other source register (€K =

11



Destination), or with data that is sent via the separate high RAM
bus (@KLM = Destination, in which the L register is loaded from
the IDB). The @KLR destination can also be used, which loads the
K register from the IDB, and loads the L register via the special
bus from the data/coefficient ROM.

when data is placed into the K register, it is automatically
accessed by the multiplier so that the multiplier solution is
available on the next instruction cycle.

The contents of the K register can also be output to the
internal data bus (K = Source).

3.10 L Register

The L Register is a 16-bit register that holds either the
multiplier or the multiplicand to be input to the multiplier.
The L register can be filled with data that is output to the
internal data bus (IDB) from some other source register (QL =
Destination), or with data that is sent via the separate ROM bus
(€KLR = Destination, in which the K register is loaded from the
IDB). The @KLM destination can also be used, which loads the L
register from the IDB, and loads the K register via the special
bus from the high RAM block.

When data is placed into the L register, it is automatically
accessed by the multiplier so that the multiplier solution is
available on the next instruction cycle.

The contents of the L register can also be output to the
internal data bus (L = Source).

3.11 M and N Registers

The M and N registers are the output registers for the
multiplier. Output from the multiplier is in 2's complement
form. The sign bit and the 15 higher bits of data are placed in
the M register, and the 15 lower bits of data are placed in the N
register (left justified, with bit 0 set to 0). This is shown
below in Figure 3.2.

-
n
o

15 HIGHER BITS OF DATA

M REGISTER BIT ORGANIZATION - —

ZO-wn

N REGISTER BIT ORGANIZATION | <e— ISLOWERBITSOFDATA ___ | ¢

FIGURE 3.2 M AND N REGISTER BIT ORGANIZATION

If both the multiplier and multiplicand are the maximum
negative value (8000H), the multiplier overflows and the output
is 80000000H. This is equivalent to -1 x -1 = -1,

The outputs of the M and N registers are connected to the P
input MPX of the ALU. No connection to the Internal Data Bus is

12



available for these registers.
For more detailed information on the internal representation

of numbers in the SPI (especially in the multiplier), see
Appendix 3.

3.12 ALU

The ALU is a 1l6~-bit two's complement unit capable of
executing sixteen distinct operations on either accumulator.
Operations with two operands (OR/AND/XOR/SUB/SBB/ADD/ADC) may use
virtually any internal register as the second operand. The
operations are:

NOP Increment Accumulator
OR/AND/XOR Complement Accumulator
Subtract l-bit Right Shift
aAdd l-bit Left Shift

2-bit Left Shift
4-bit Left Shift
8~bit Exchange

Subtract with Borrow
Add with Carry
Decrement Accunmulator

* % % % % ¥ »
* % N N NN

The ALU outputs from these operations are stored back into

the same accumulator that was operated on (ASL).
Note that in the case of a subtract that Q-P is performed

(i.e. Accumulator - X). See Figure 3,.3.

13



INTERNAL
DATABUS M REGISTER N REGISTER RAM

=
3:‘11 {5—_ ' —l
P-SELECT MUX /L' SHIFT

N
2] FLAG A
FLAG B

<
| Acc A | Acc B I

MPX

FIGURE 3.3 ALU AND CONNECTIONS BLOCK DIAGRAM
3.13 Accumulators (AccA, AccB)

The accumulators are a pair of 16-bit registers that store
the results of ALU operations. Each accumulator has its own set
of flags that are updated after each arithmetic operation except
NOP.

Whether the ALU output goes to AccA or AccB is specified by
the ASL bit of each OP/RT instruction. The contents of both AccaA
and AccB can be output to the internal data bus and can also be
input to the Q input of ALU or to SHIFT, as needed by the
particular ALU operation.

The output from the internal data bus to AccA or AccB, or
conversely, from the accumulators to the internal data bus, is
controlled by the SRC and DST fields of the OP/RT instruction.
Data may be moved from a source to a destination during an
arithmetic operation (see Figure 1.2 - Block Diagram).

If the accumulator being used for an ALU oPeratlon is
specified as a destination (@A or @B) for IDB information in the
same instruction, the ALU performs a NOP (regardless of the
operation specified) and the IDB data is latched to that
accumulator.

If the accumulator being used for an ALU operatlon is
specified as a source (A or B) for IDB information in the same

14



instruction, the original contents of the accumulator at the
beginning of the instruction (before the ALU operation is
performed) is output to the IDB and latched to the destination

register.
3.14 SHIFT

Five different shift operations may be implemented on l6-bit
data in either AccA or AccB.

1) l-bit Right Shift (Arithmetic)

The LSB is placed in the Carry bit of the Acc selected by
the ASL bit of an OP/RT instruction. The sign bit is copied to
the next lower bit. All other bits are shifted right one
position. This operation is equivalent to a two's complement
division operation.

M L
S ]
8 12 8 4 8

At A

FIGURE 3.4 1-BIT RIGHT SHIFT

| | CARRY FLAG OF SELECTED
ACCUMULATOR

2) 1l-bit Left Shift

The Carry flag of the Acc not selected by the ASL bit is put
into the LSB, and the MSB of the selected Acc goes to its own
Carry flag bit. This is useful for a 32-bit left shift (multiply
by two).

M
C FLAG OF

L
s S
BEFORE SHIFT Cﬁ EENEEEEEEEEEER OTHER ACCUMULATOR

AFTER SHIFT

C FLAG
FIGURE 3.5 1-BIT LEFT SHIFT

3) 2-bit Left Shift

The two lower bits are filled with ones, and the two highest

bits are discarded.
M L
S S
B14 12 10 8 6 4 2 B

BEFORE SHIFT | T 1T T [ [T : :

AFTER SHIFT  DISCARDED i

FIGURE 3.6 2-BIT LEFT SHEIFT

15



4) 4-bit Left Shift

The four lower bits are filled with ones, and the four
highest bits are discarded.

M L
S S
B 12 8 4 8B
BEFORE SHIFT %/I T
AFTER SHIFT i l f [1111]

DISCARDED
FIGURE 3.7 4-BIT LEFT SHIFT

5) 8=bit Exchange

The eight higher bits are exchanged with the eight lower
bits.

M L
S s
8 12 8 4 B
BEFORE SHIFT L >l_< ]
AFTER SHIFT L | |

FIGURE 3.8 8-BIT EXCHANGE

3.15 Flag Registers (See ALU function and Flag operation ~ Table
4.2)

The uPD7720A has two flag registers: Flag A and Flag B.
Flag A is a six~bit register that indicates the results and
latest status of ALU operations performed on AccA., Flag B
performs the same function for AccB. Note that moving data to an
accumulator, when specified as the destination in either an OP/RT
instruction or a LDI instruction, will not affect the flag for
that accumulator. Each flag register consists of the following
flag bits shown in figure 3.9.

FLAG A SA1| SAO | CA | ZA [OVA110OVAQ

FLAG B SB1| SBO | CB | ZB |[OvB1|OVBO

FIGURE 3.9 ACCUMULATOR FLAG BITS
1) CA, CB (Carry)

These flags store the carry of operational results.

Carry from the ALU is stored after one of the following
operations: SUB, ADD, SBB, ADC, DEC, or INC.

After a 1-bit Right Shift or a 1-bit Left Shift, the LSB or
MSB is stored, respectively.

In operations other than those above, this flag is set to

16



zero, The last previous status is unchanged after a NOP.
2) ZA, ZB (Zero)

This flag is set to one if the ALU operation result data
stored in the Acc is zero, and is set to zero if the contents of
thgoAcc is nonzero, The last previous status is unchanged after
a P.

3) 8sa0, SBO (sign)

In operations other than NOP, the MSB of the ALU contents is
placed in this flag. The last previous status is unchanged after
a NOP.

4) OVAO, OVBO (Overflow)

This flag stores the logical XOR of the carry from the 15th
bit (MSB (SIGN)) and the carry from the 1l4th bit of the Acc after
one of the following operations: SUB, ADD, SBB, ADC, DEC, or
INC., The last previous status is unchanged after a NOP. This
flag is set to zero after any operation other than the previous
ones.

5) OVAl, OVBl1l (Overflow)

This flag promotes more efficient overflow processing for up
to three consecutive additions.

This flag is set to one if the overflow flag (OVAO, OVBO)
was set an odd number of times after the three consecutive
additions. It is set to zero if the overflow flag was either
never set or set twice in a row. If the overflow was set in the
order 1-0-1, then:

OVAl (OVBl) = 1, if SAl (SBl) = SAO0 (SBO), or

oval (OovBl) = 0, if SAl (SBl) is not equal to SAO0 (SBO)

This applies to SUB, ADD, SBB, ADC, DEC, and INC. The
previous status is unchanged after a NOP. This flag is set to
zero after operations other than the above.

For a more detailed discussion of overflow processing using
the OVAl and SAl (OVBl and SBl) flags, see Appendix 2.

6) SAl, SBl (Sign)

This flag, used with OVAal (0OVBl) aids in overflow
processing. Direction of an overflow (positive or negative) can
be judged with this flag.

If the overflow status (OVAl, OVBl) equals zero as the next
ALU operation (SUB, ADD, SBB, ADC, DEC, INC) is begun, this flag
is set equal to the resultant sign bit (SAO0, SBO) after that
operation. If the overflow status (OVAl, OVBl) equals one at the
beginning of the operation, the value of this flag is unchanged.
In this way, the sign of the accumulator immediately after an
overflow is preserved through succeeding operations.

The previous status is unchanged after a NOP. This flag is
indeterminate after operations other than the above.

17



Again, see Appendix 2 for a more detailed discussion of
overflow processing.

3.16 Sign Register (SGN)

When OVAl is set, the SAl bit will hold the corrected sign
of the overflow. The SGN Register will use SAl to automatically
generate saturation constants 7FFFH(+) or 8000H(-) to permit
efficient limiting of a calculated value. The SGN will hold the
current saturation value for up to three consecutive additions in
a row,

3.17 Temporary Register (TR)

The TR register is a 16-bit temporary storage register on
the internal data bus.

3.18 Status Register (SR)

The Status Register is a 16-bit register that contains the
information required to handle data transfers with external
devices, Of the 16 bits, only the 8 MSBs may be read by an
external processor. Any attempt to write into bits that are not
defined (bits 2 through 6) or under SPI control (RQM, bit 15; and
DRS, bit 12) is ignored. After reset, all SR bits will be
Cleared to zero.

MSB LSB

RQMJUSF1 P1| PO

= v -
(=]

]
usmlons DMA|DRC|soC|siICcl EI | 0 1+ © ; 010

FIGURE 3.10 STATUS REGISTER BITS
1) RQM (Request for Master)

This flag bit is used for data transfers between the data
register and the host processor in non-DMA mode.

A data transfer (read or write) between the internal data
bus (IDB) and the Data Register (DR) sets this flag to one. An
external 8- or 1l6-bit read or write resets this flag to zero.
The status of this bit remains unchanged when DMA = 1 (DMA mode).

When using DRNF in the SRC field of an OP/RT instruction,
this flag is not set, even though data is read from the data
register to the internal data bus.

2) USFl, USFO0 (User Flags)

These are general purpose flags that can be read by the host
processor for user-defined signalling.

3) DRS (Data Register Status)
This bit indicates the status of data transfers when an

exg?rnal device views the data register as a 16-bit register (DRC

The data bus connecting to external devices has only 8 bits;

18



therefore, if the data register is operating in 16-bit mode, data
must be transferred in two steps. This bit turns to one after
the first transfer, then back to zero after the second transfer
completes the 1l6-bit transfer (low byte is transferred first,
then high byte).

This bit remains at zero during 8-bit transfers (DRC = 1).

4) DMA (Direct Memory Access)

This bit determines the method by which data can be
transferred between an external device and the data register.

When this bit is 1, data transfers are made via DMA using
DRQ and DACK/. Note that DACK/ is the equivalent of setting both
CS/ and A0 to a low condition. When this bit is a zero, parallel
data transfer is handled by controlling CS/ and A0 directly by
the controlling device.

5) DRC (Data Register Control)

This bit controls whether the data register is used in
double byte (16-bit) or single byte (8-bit) mode. When this bit
is 0, the data register is set for 16-bit transfers. When this
bit is 1, the data register is set for 8~bit transfers.

6) SOC (Serial Output Control)

This bit specifies the length of serial data to be output
from the SO pin. When this bit is 0, all 16 bits of the data
word are output. When this bit is a 1, only 8 bits of the data
word are output (the low 8 bits of the SO register).

7) SIC (Serial Input Control)

This bit specifies the length of serial data to be input at
the SI pin. When this bit is 0, the data input is 16 bits. When
this bit is a 1, the data input is 8 bits.

8) EI (Enable Interrupt)
When this bit is 1, interrupts are accepted. When an
interrupt is received, this bit is automatically reset to reject

subsequent interrupts. When this bit is set to zero, interrupts
are not accepted or remembered by the SPI.

9) Pl, PO

These bits correspond to the output ports Pl and PO. All
values input here are output as they are (e.g. setting PO to a 1l
will cause the PO output pin to go to a high output level).
3.19 Parallel I/0 Port

The 8-bit parallel I/O port may be used for transferring

data or reading the status of the SPI. Data transfer is handled
through a 16-bit Data Register (DR) that is software-configurable

19



for single or double byte transfers.

'DBT ~ 18

ISTER
108 ~ 1 DR REGIS
I

C : MPX C’_’___>oo~o,
T DORS

TN

LOWER
8 BITS

=
4=

& _

a = e RD

Yo .—H

Ta «—— W
T phdd
J
o lt——— DACK
T DRQ
ORC

FIGURE 3.11 DATA REGISTER AND CONNECTIONS BLOCK DIAGRAM

3.20 DR (Data Register)

This 16-bit register is used to transfer data between the
SPI and external devices. The data bus, D0-D7, is eight bits
wide, Sixteen-bit data is transferred in two steps (low byte
first, then high byte) even though a transfer is made only once
internally.

If the DRC bit of the status register defines the data
register as eight bits, only the lower eight bits of the data
register are transferred to/from an external device.

3.21 Parallel READ/WRITE Operation

The Read/Write control logic transfers data to or from the
SPI, depending on the status of the external control signals,
¢cs/, a0, WR/, RD/, or DACK/, as shown in Table 3.1l. The
condition of DACK/ = 0 is equivalent to A0 and CS/ both being
equal to 0.

Data is sent to or from the SPI in low byte, high byte
order.

Whether the eight MSBs or eight LSBs are being transferred
is denoted by the status of the DRS bit of the status register.

20



CS Ag WR RD Operation

1 X X X Internal operation is not affected: Dg-D7

X X 1 1 are kept at a high impedance state
0 0 0 1 Data of Dy-D7 are latched to DR register”

0 0 1 0 Contents of DR register are output to Dg-D7*
0 1 0 1 PROHIBITED

0 1 1 0 8 higher bits of SR register are output to Do-D
0 X 0 0 PROHIBITED

*Whether 8 higher bits or lower bits of DR register are assigned depends on the status of the DRS bit
of the SR register.

TABLE 3.1 R/W CONTROL LOGIC
3.22 DMA Interface Logic

DMA data transfers are controlled by DRQ and DACK/, and may
take place only when the DMA bit of the status register is set to

1) DRQ Operation

DRQ is a DMA request for the host processor or the DMA
controller to begin the DMA transfer. When data is transferred
between the data register and the internal data bus, DRQ is set
to 1 and output. DRNF in the SRC field of an OP/RT instruction
prevents DRQ from being set even if a transfer from the data
register has been made,

When DRC = 0, DRQ is reset at the second assertion of DACK/
to read or write data. In other words, if 16-bit transfers are
specified, DRQ will remain active until the transfer of the
second byte (of that 16-bit word being transferred) has been
started.

When DRC = 1, DRQ is reset at every assertion of DACK/ to
read or write data. In other words, if 8-bit transfers are
specified, DRQ will remain active until the transfer of that byte
of data has started.

Note: The RQM bit is not affected by data transfers in DMA
mode.

21



DRC=0 (16 bit transfers)

DRQ —J | O | |

C

DACK. W) (A U

ORC =1 (8 bit transfers)

DRQ —_ S
back \ U U J

FIGURE 3.12 DRQ AND DACK/ TIMING

3.23 SI Register (Serial Input)

The SI register is the register in which serial input data
is latched. It performs the following functions:

l) Serial data should be synchronized with the serial clock,
such that the data may be latched at the rising edge of the
serial clock.

2) Serial data is converted to parallel data by an internal
shift register.

3) Shift register data is transferred to the SI register when
the number of bits shifted equals the length specified by the SIC
bit of the status register.

4) An internal flag (SIACK flag) is set when the data is latched
to the SI register, and reset when data is read out of the SI
register, by specifying it as the source of a MOV, There are
conditional jump instructions that test the status of SIACK.

5) Two field specifications of the OP/RT instructions are
available to read any parallel data from the SI register to the
internal data bus. One specification (SIM = SRC) outputs the SI
register's MSB to the MSB of the IDB (Normal order); the other
specification (SIL = SRC) outputs the LSB to the MSB (bit
reversed order).

6) If the SIC bit of the status register is 1 (8-bit mode) and
data is shifted in MSB first, the SIM source specification should
be used to load the data to the IDB in normal order. Zeroes will
be placed in the high eight bits of the IDB.

22



7) The input of serial data to the shift register and the output
of parallel data from the SI register (to the Internal Data Bus)
may be performed independently. This feature permits the
consecutive inputting of serial data.

8) If data is not read from the SI register before the next
whole byte or word (depending on mode) has been shifted in, the
previous data in the SI register will be lost, as the new data
will be latched in over it into the SI register.

SERIAL
INPUT—.ISIH SR || SIR }o==-=-—-+ SR SR - S

CONTROL
) y ] [ ) LOGIC

Sy Sl S| ~===——- St Shs - fo—=GSIEN

ﬁ S| ACK FLAG

(s1IL)

(SIM)
()] C1)

2

—t b b
ohw

FIGURE 3.13 SERIAL INPUT BLOCK DIAGRAM

e« M1 IS e e ™ o rrorm

NPUTDATA —— X X0 X+ X2 X XT o X em a5 eiX Ve

SIEN \ /

S| REGISTER ML

LOAD PULSE

St ACK FLAG

INTERNAL Reset when
data is read

SIGNALS from SI

register
to IDB

FIGURE 3.14 SERIAL INPUT TIMING

23



3.24 SO Register (Serial Output)

The SO register outputs serial data. It performs the
following functions:

1) Data being output is loaded in the SO register (16 bits
parallel) from the internal data bus.

2) An internal flag (SOACK flag) is set when data is written to
the SO register.

3) Output data is transferred to the shift register from the SO
register. If the shift register is busy, the data transfer is
held until it is available.

4) SORQ is set to 1 when the data is transferred to the shift
register informing the external device that data is available,

5) When output data is transferred from the SO register to the
shift register, the SOACK flag is reset, indicating that the SO
register is ready for the next word of data.

6) The serial transfer starts if SOEN/ = 0 is input after data
is sent to the shift register, i.e. if SORQ = 1.

7) The SO pin is held high if SORQ = 1 and SOEN/ = 1, or if SORQ
= 0 regardless of the state of SOEN/,

8) After sending the number of bits specified by the SOC bit of
the status register, and if no more data is available in the SO
register, SORQ is set to 0, instructing the system to wait for
the next serial output data.

9) Serial data is clocked out synchronously with the falling
edge of SCK, and is held until after the rising edge of SCK. It
is the rising edge of SCK that should be used by the external
device to accept each bit of data.

10) Like the SI register, SO register data may be sent in either
normal or bit reversed order (using QSOM or @SOL, respectively,
as the destination specification in the OP/RT instruction).

11) 1If the 8SOM destination is used to write data to the SO
register, the MSB of the 16-bit word written into the register is
shifted out first, regardless of whether the SO register is in 8
or 16 bit mode. The result of this is that, in order to shift
out 8-bit data MSB first, the 8-bit data byte must be in the high
order byte of the source register before transferring it to the
SO register.

24



seRAL _ [eolleallem] oo
SuTPUT T S [+ SR [+{ SR <« SR |} SR fe——— SCK
] b 3 4 CONTROL
LOGIC —SORQ
SOy SO, SOz |=====~ - FOM 5015‘ e—— SOEN
MPX /l\ /l\ ------- I‘L\ SO ACK FLAG
IDB 0
1
2
13
14
15
FIGURE 3.15 SERIAL OUTPUT BLOCK DIAGRAM
SCK | I J L) J J J J ] 1
SORQ } — " sTTTT
SQEN

o B
4!‘ ean HIGH
QUTPUT DATA M o X 1 X 2 x :: )(13095)(14096)(1501?72" GHZ

| T .

abeiabiebdeb il DDA A b 4 2 e bl 1
SO ACK FLAG _J | ¢ ‘
7 .
LOAD l ] (NEXT DATA SET) ' I8
Internal THE BROKEN LINE DENQTES THE CONSECUTIVE SENDING OF NEXT DATA
Signals

FIGURE 3.16 SERIAL OUTPUT TIMING

25



3.25 1Interrupts
Interrupts are processed in the following manner:

1) If the EI bit of the status register is 1, when a rising edge
is sensed on the INT pin, the present instruction is finished.
And a NOP and JMP instruction to location 100H are implemented.

2) The return address is pushed onto the stack (during NOP).

3) All rising edges of interrupt line are ignored if the EI bit
is set to zero (which will occur after an interrupt is received).

4) Interrupt will reset the EI bit to zero and must be set under
program control to accept another interrupt.

5) After an interrupt is accepted, the INT pin should be reset
low before the next interrupt; otherwise, only the first
interrupt is accepted, even if the EI bit is high. This is a
direct result of the fact that the INT pin is edge sensitive, not
level sensitive,

26



4. INSTRUCTIONS

The SPI has three types of instructions, all one word
composed of 23 bits. Each instruction type may be identified by
the code in the OP field (Bits 22 & 21). All instructions
execute in one instruction cycle.

4.1 OP/RT Instruction

22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

Op/RT 00/01 SEEECT ALU

—wn>»

8
R
P
DP_ | OPHM |D SRC osT
C
R

FIGURE 4.1 OP/RT INSTRUCTION FORMAT

This instruction performs the operations specified by the
eight fields and the two bit OP code. It is used for arithmetic
operations, data transfers, and subroutine returns.

When this is an OP instruction (OP Field = 00), the program
counter holds the current address plus one as the next address.
When this is an RT instruction (OP Field = 01), the program
counter is set with the value at the top of the LIFO stack at the
end of the instruction cycle.

27



FIGURE 4.2 ASSEMBLY LANGUAGE INSTRUCTION FORMAT
ARITHMETIC MOV ("OP/RT")

IN PARALLEL:

*

*

EXAMPLE:

TRANSFER DATA VIA THE INTERNAL DATA BUS
PERFORM ALU OPERATION

MULTIPLIER IS ALWAYS MULTIPLYING--RESULT IS ALWAYS
AVAILABLE TO BE USED IN AN ALU OPERATION

DATA RAM POINTER MODIFICATION
DATA ROM POINTER MODIFICATION
SUBROUTINE RETURN

oP MOV @RLR,MEM /* RAM(DP) =--> K, ROM(RP) --> L
/* LOAD BOTH MULTIPLIER INPUTS,
/* K FROM RAM (VIA IDB), L FROM
/* ROM (VIA SPECIAL BUS)

ADD ACCA,M /* ADD PREVIOUS PRODUCT TO ACCA
DPINC /* INCREMENT RAM POINTER LOW

M1 /* MODIFY RAM POINTER HIGH
RPDEC /* DECREMENT ROM POINTER

RET ;/* SUBROUTINE (OR INT.) RETURN

* NOTE: 1) ALL OF THE ABOVE FUNCTIONS EXECUTE IN

ONE INSTRUCTION CYCLE.

2) PRODUCT OF VALUES LOADED TO K AND L
REGISTERS WILL BE AVAILABLE ON THE NEXT
INSTRUCTION CYCLE,

*/
*/
*/
®/
*/
*/

*/

3) ALL DP AND RP MANIPULATIONS ARE DONE AT THE

END OF THE INSTRUCTION CYCLE (MODIFIED
ADDRESSES WILL BE AVAILABLE ON THE NEXT
INSTRUCTION CYCLE.

4) THIS IS ACTUALLY AN RT INSTRUCTION BECAUSE

RET IS USED. WITHOUT RET THIS WOULD BE
AN OP INSTRUCTION.

28



4.1,1 P-Select Field

This field selects the source for P input of the ALU. This
input may come from RAM, the internal data bus, the M register,
or the N register for the logical and arithmetic ALU operations.
For the NOP, INC, DEC, Complement Acc, 8-bit Exchange, and Shift
operations, the P input is ignored, and the accumulator alone is
operated on accordingly.

P-SELECT
o FIELD
MONIC D2 Dig _ INPUT
RAM 0 0 RAM
DB 0 1 Internal Data Bus
M 1 0 M Register
N 1 1 N Register

TABLE 4.1 P-SELECT FIELD

4.1.2 ALU Field

This field specifies the ALU function according to the table
below. Note that all results from an ALU operation are left in
the accumulator that was operated on (ASL bit).

Flags Affected
ALU Field Flag A SA1{ SA0O| CA | ZA | OVAl|OVAO
Mnemonic | D1g D17 D16 D15 ALU Function FlagB SB1} SBO{ CB Z8 | ovB1|OVBO
NOP 0 0 0 0 No Operation - - - - - -
OR 0 0 0 1 OR X t g t ] @
AND (o] 0 1 0 AND X $ 2 E: ] 9
XOR o 0 1 1 Exclusive OR X 3 9 t 0 9
sus 0 1 0 4] Subtract $ ! ¥ $ $ b
ADD 0 1 0 1 ADD t 1 ¥ ¥ ! }
Ses 1] 1 1 0 Subtract with t : t t : H
Borrow
ADC 0 1 1 1 Add with Carry b t 2 ¢ ¢ 1
DEC 1 o 0 o0 Decrement Acc ¢ t H H t t
INC 1 o o 1 Increment ACC t ¢ ] H ! $
CMP 1 0 1 0 Complement ACC X : a $ 0 0
{1's Complemant}
SHR1 1 0 1 1 1-bit A-Shift X 4 t ¢ 2 Q
SHL1 1 1 0 0 1-bit L-Shift X t b ¢ "] "
SHL2 1 1 0 1 2-bit L-Shift X t 9 H '] "
SHL4 1 1 1 0 4.bit L-Shift X H 9 3 ) (")
XCHG 1 1 1 1 8-bit Exchange X t @ H ] [ ]
$ May be sffectad, Cepending on the resuits
— Previous status can be held
9 Resat
X Indefinite

TABLE 4.2 ALU FUNCTION AND FLAG OPERATION

29



1) NOP (No Operation)

No operation is made by the ALU. The Acc Flags are
unchanged. All of the ALU functions that follow are equivalent
to a NOP if the accumulator being operated on is used as a
destination for a move as part of the same instruction (€A or @B
= DST).

2) OR/AND/XOR

These operations are executed between the input selected by
the P-Select field and one of the accumulators. The ASL bit
chooses the Acc to be operated on.

3) SUB (Subtract)

This operation subtracts the input selected in the P-Select
field from the specified accumulator and leaves the result in
that accumulator. The borrow input to the lowest bit is zero
(Acc - P-Select input).

4) ADD

This operation adds the input selected in the P-Select field
to the specified accumulator. The carry input to the lowest bit
is zero.

5) SBB (Subtract with Borrow)

This operation subtracts the input selected in the P-Select
field from the specified accumulator., The Borrow (Carry) flag of
the Flag register not selected by the ASL bit is input as a
borrow to the lowest bit., For example, if AccA is selected, the
Borrow (Carry) of Flag B (CB) is used as the borrow. This
feature is useful for implementing 32-bit arithmetic using both
accumulators in parallel as a 32-bit composite accumulator.

6} ADC (Add with Carry)

This operation adds the input selected in the P-Select field
to the specified accumulator. The Carry flag of the Flag
register not selected by the ASL is input as a carry to the
lowest bit. For example, if AccA is selected, the Carry of Flag
B (CB) is added. As with the SBB operation, this feature is
useful for implementing 32-bit arithmetic,

7) DEC (Decrement Acc)

This operation subtracts one from the value of the
accumulator specified by the ASL bit.

8) INC (Increment Acc)

This operation adds one to the value of the accumulator

30



specified by the ASL bit.
9) CMP (Complement Acc)

This operation takes the one's complement of the value of
the accumulator specified by the ASL bit,.

10) SHRL (1-bit Shift Right)

This operation shifts the contents of the specified
accumulator one bit to the right. The sign bit (MSB, bit 15)
retains its value and also is entered into the MSB-1l (bit 14).
The LSB is sent to the carry flag of the Acc selected., For
example, if AccA is selected, the LSB of AccA before the shift is
sent to the carry flag of A (Ca).

11) SHL1 (1-bit Shift Left)

This operation shifts the contents of the specified
accumulator one bit to the left. The Carry flag of the
accumulator not selected is input to the LSB after the shift.
For example, if AccA is selected, the carry flag of B (CB) is
input to the LSB of A. The MSB (bit 15) before the shift is sent
to its own carry flag. (In this example, AccA's MSB goes to CA).

12) SHL2 (2-bit Shift Left)

This operation shifts the contents of the specified
accumulator two bits to the left. The two LSBs after the shift
are both set to 1. The two MSBs before the shift are discarded.

13) SBL4 (4-bit Shift Left)

This operation shifts the contents of the specified
accumulator four bits to the left. The four LSBs after the shift
are all set to 1. The four MSBs before the shift are discarded.

14) XCHG (8=-bit Exchange)

This operation exchanges the eight higher bits and eight
lower bits of the selected accumulator.

4.1.3 ASL (Accumulator Select) Bit

This bit specifies whether AccA or AccB is used for the ALU
operation. The same Acc is specified for both the input to the
ALU operation and the place where the result is stored. The
corresponding flag register is also selected by this bit, except
in the cases already mentioned in the ALU operations section in
which the other accumulator's carry flag is used.

Accumulator A is selected if this bit is 0, and B is
selected if this bit is 1.

This bit is ignored if NOP is specified in the ALU field, or
in the case that the Acc specified by this bit is also specified
in the DST (Destination) field.

31



ASL Field
Mnemonic D14 Acc Selaction
ACCA 0 Acc A
ACCB 1 Acc B

TABLE 4.3 ACCUMULATOR SELECT FIELD

4.1.4 DPL Field

This field specifies the modification of the four lower bits
(DPL) of the data pointer. The DPL value, changed by the
operation, is valid for the pext instruction, and specifies the
RAM address for that instruction.

The table below shows the possible operations.

DPy Fisld
Mnemonic D13 Dq2 DP3-DPg
DPNQP 0 0 No Operation
DPINC 0 1 increment DP|_
DPDEC 1 0 Decrement DPy
DPCLR 1 1 Clear DP

TABLE 4.4 DATA POINTER LOW FIELD

This field is ignored if @DP is specified in the DST field.
If DP is specified in the SRC field, the value of DP before
change is output to the internal data bus, If the RAM is
accessed in this instruction (either for a move or for P-Select),

the value of DP before change is the effective address during
this instruction,

The counter used for modification is a modulo counter (OH
comes after OFH if using DPINC), There is no carry to or borrow
from the upper bits of DP (DPH).

Note that a conditional branch instruction can be used to
test for the conditions that the DPL field is either 0 or OFH.

4.,1.5 DPH-M (DPH Modify) Field
This field modifies the three higher bits (DPH) of the data
pointer by XORing them with the three bits of this field. The

modified DPH wvalue is valid for the pnext instruction, and
specifies the RAM address of that instruction.

32



OP4-M Fisld

Mnemonic | D19y Dqg Dg Exclusive OR

* MO 0O O O | (DPg DPg DPg) ¥ (0 0 0
M1 o o0 1 DPg DPg DPg ¥ (0 0 1)
M2 0O 1 0| DPg DPg DPq ¥ (0 1 0)
M3 o 1 1 DPg OPg DPg ¥ (0 1 1)
M4 1 0 O DPg DPg DPg ¥ (1 0 0)
M5 1 o 1 DPg DPg DPg ¥ (1 0 1)
M8 1 T 0 DPg DPg DPg ¥ (1 1 0)
M7 1 1 1 DPg DPg DPg ¥ (1 1 1)

* NO CHANGE

TABLE 4.5 DATA POINTER HIGH MODIFICATION FIELD

As shown in Table 4.5, DP6, DP5, and DP4 are XORed with the
value in this field, and the result is put into DP6-4. 1If no
modification of the DPH value is desired, each bit of this field
must be set to zero (MO), MO is selected by default when the
DPH-M field is not specified in the OP/RT instruction.

As is the case with the DPL field, this field is ignored if
@DP is specified in the DST field. 1If DP is specified in the SRC
field, the value of DP hefore change is output to the internal
data bus. If the RAM is accessed in this instruction (either for
a move or for P-Select), the value of DP before change is the
effective address during this instruction.

See Appendix 1 for examples of how to use the DPL and DPH
fields for efficient use of memory.

4.1.6 RPDCR Bit (RP Decrement)

When this bit is 1, the value in the RP register is
decremented. The decremented value is valid for the pext
instruction. The output of the data ROM that corresponds to the
decreased value can be read on the next instruction,

No change is made to the RP pointer value if this bit is set
to O,

As with the DPL and DPH fields, this bit is ignored if @RP
is specified in the DST field., Also, if the ROM is accessed by
the current instruction in which RP is being decremented, the
address before decrementing is used to access the ROM, Finally,
if RP is specified as the SRC field, the value before
decrementing is output to the internal data bus.

33



RPDCR

Mnemeonic Dg Operation
RPNOP o No Operation
RPDEC 1 Decrement RP

TABLE 4.6 ROM POINTER DECREMENT FIELD

A typical usage of the ROM area would be for filter
coefficients. Suppose several biquad filters are to be performed
for each input sample. Then, the filter coefficients could be
stored in descending ROM locations, in the order in which they
will be needed to perform the filter computations. At the
beginning of each sample period, the top address of the
coefficient block could be loaded to @RP with a LDI (Load
Immediate) instruction. Then, the filter subroutine would merely
perform a RPDEC in each instruction that used a filter
coefficient (using a coefficient would typically mean moving it
to the multiplier). In this way, the RP would be pointing to the
next coefficient that would be needed by the filter subroutine
before the particular instruction that would use that
coefficient. If the last access of a filter coefficient in the
filter subroutine also has a RPDEC associated with it, the RP
will "fall through" and point to the first coefficient for the
next filter section, without needing to be set-up between calls
to the filter subroutine.

4.1.7 SRC Field (Source)

This field specifies the register from which the data that
is to be placed on the internal data bus comes,

34



SRC Fisld

Mnamonic | Dy Dg Dg Dg Specified Register
NON 0 0 0 O | NO Register
A 0 0 0 1 | Acc A {Accumulator A)
B 0 0 1 0 | AccB (Accumulator B)
TR 0O 0 1t 1 TR Temporary Register
DP 0 1t 0 O | DP DataPointer
RP 0 1 0 1 | RP ROM Pointer
RO 0 1 1 0 | RO ROM Qutput Data
SGN 0 1 1 1 | SGN Sign Register
DR 1 0 0 O | DR Data Register
DRNF 1 0 0 1 | DR DataNoFlag @
SR 1 0 1 0 | SR Status
SIM 1 0 1 1 | S| SerialinMSB @
SIL 1 1 0 0 | Sl SerialinLS8 @
K 1 1 0 1 K Register

L 1 1 1 0 | L Register
MEM 1 1 1 1 | RAM

@ DR to IDB, ROM flag not set, In DMA mode, DRQ not set.
@ First bit in goes to MSB, last bit to LSB.
@ First bit in goes to LSB, last bit to MSB (bit reversed).

TABLE 4.7 SOURCE FIELD SPECIFICATIONS

The registers that may be used for this field are shown in
Table 4.7. The contents of the specified register are output to
the internal data bus. In general, the specified source field
should not be also specified as the destination £ield. Such an
operation would be meaningless. If no move is desired, NON and
@NON can be specified as the SRC and DST fields (the assembler
will default to these specifications if these fields are not
explicitly specified in the source code for any given OP/RT
instruction).

As previously mentioned, registers that are specified as SRC
registers that are also being changed in the same instruction
(such as accumulators selected for ALU operation, or the RAM and
ROM pointers that may be getting modified) are generally put onto
the internal data bus with their values before

4,1.8 DST Field (Destination)

The value placed on the IDB (SRC) is latched to the register
specified in the DST field.

35



DST Field
Mnemonic | D3 D2 Dq Dg Specified Register

@NON 0 0 0 0| NORegister
@A 0 0 0 1 | Acc A {Accumulator A)
@8 0 0 1 0 | Acc B (Accumulator B)
@®TR 0 0 1 1| TR Temporary Register
@DP 0 1 0 O | DP DataPointer
@RP 0 1 0 1| RP ROM Pointer
@DR 0 1 1 0 | DR Data Register
@SR 0 1 1 1] SR Status Register
@soL 1 0 0 O | SOSerialCutLsB @
@SOM 1 0 0 1| SOSerialQutMSB @
ex 1 0 1t 0| K (Mult)
@KLR 1 0 1t 1| iDB=KROM-=L @
@KLM 1 1 0 O Hi RAM—+KIDB~L @
@ 1 1 0 1 L (Mult)
@NON 1 1 1 0| NO Register
@MEM 1T 1T 1 RAM

@ LSB is first bit out.

@ MsB is first bit out.

@ internal data bus to K and ROM to L register.

@ Contents of RAM address specified by DPg = 1 (i.e., 1, DPg,

DP4.-DPg) is piaced in K register. IDB is placed in L.

TABLE 4.8 DESTINATION FIELD SPECIFICATIONS

If the same accumulator is specified in both the DST field
and the ASL bit, the ASL bit is ignored and the ALU performs a
NOP. 1If the DP or RP register is specified in this field, any
modifications specified by the DPH, DPL, and RPDCR fields are
ignored.

Note that the @KLM and @KLR destinations latch data from a
special bus to the K or L registers, from High RAM or ROM
(respectively), as well as the value on the IDB (from wherever
the SRC field specifies) to the L or K multiplier input register.
This feature allows both multiplier input registers to be loaded
as part of the same instruction (while the previous multiplier
result may be added to an accumulator at the same time).

See the examples in Appendix 1 for illustrations of the use

36



of these destination specifications.
The LDI instruction also uses the DST field to specify where
to load immediate data,

4,1,9 Instruction Timing

As mentioned in the preceeding sections, certain operations
that can be done in an OP/RT instruction are done before or after
certain other operations. For example, if an accumulator is
specified in both the ASL and SRC fields, the value before the
ALU operation is performed is the value that goes onto the IDB.
Similar timing holds for DP or RP as sources if pointer
modifications are specified. Because of these relations among
operations happening concurrently in one instruction, it is
strongly recommended to write OP/RT instructions according to the
following convention:

OP MOV @DST,SRC /* Move specified first, in
case the register specified
as the source (or the
pointer for the source) is
changed later in this same
instruction (value of
register before change is
used as source) */

ALU ASL,P-SEL /* ALU operation next, since
P-Select may specify IDB,
and the source register is
now already specified, or
in case the P-Select field
is RAM, and the DP pointer
is going to be modified in
this instruction */

DPL /* Pointer modifications next,
in any order, come after
MOV and ALU operations,
since these modifications
are not effective for use
during this instruction,
but are ready in time for

the next instruction */
DPH-M
RPDCR
RET /* Return at end, if desired,

to indicate that all
preceeding actions are,
in fact, done before the
return is executed */

Of course, the above operations may be specified in any
order within the same OP/RT instruction, and the assembler will
still assemble the exact same object code, and the operations
will still be performed in the same order, regardless of the
order written. The order suggested here is only for convenience,
to minimize any confusion about the order in which the individual

37



operations are performed.

Note, however, that if the DST field specifies the same
accumulator as ASL, the MOV will take precedence, and the ALU
operation will be forced to NOP (internally in the SPI, not by
the assembler). Similarly, if the DST field specifies €DP or @RP
and the pointer is also specified to be modified, again the MOV
will take precedence and the pointer modification will be
ignored. These conflicts are described in the preceeding sections
that describe the individual fields of the OP/RT instruction.
Therefore, to avoid confusion, it is further recommended to avoid
such conflicting specifications.

4,2 JP Instruction

The JP instruction contains three fields (other than the OP
code)--branch (BRCH), condition (CND), and next address (NA), and
it may take one of three forms: unconditional jump, conditional
jump, or subroutine call.

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1t O

10 BRCH CND NA

FIGURE 4.3 JP INSTRUCTION FORMAT

EXAMPLE: JSA0 OVFLOW : /* Jump to OVFLOW if the Acca
Sign 0 bit (SAQ) is "1" */

FIGURE 4.4 JP ASSEMBLY LANGUAGE INSTRUCTION FORMAT

4,2,1 BRCH Field (Branch)

This field specifies which of the three forms is to be
executed. The instruction specifications are shown in Table 4.9.

BRCH FIELD
MNEMONIC D20 D1g D1s FUNCTION
JMP 1 0 0 Unconditional Jump
CALL 1 0 1 Subroutine Call
¥ 0 1 0 Conditional Jump

*Mnemonic of the CND field is used.

TABLE 4.9 BRANCH FIELD

38



1) Unconditional Jump

The address in the NA field is transferred to PC when this
instruction is executed. The CND field is ignored.

2) Conditional Jump

If the condition specified in the CND field is true, the
address in the NA field is transferred to PC when this
instruction is executed. If the condition is false, PC = PC + 1.

3) Subroutine Call

The address in the NA field is transferred to PC, and the
return address (PC + 1) is pushed to the stack. The CND field is
ignored.

4.2.2 CND Field (Condition)
This field specifies the condition that must be true for a

conditional jump to be executed. All possible conditional jump
instructions and their mnemonics are shown in Table 4.10.

39



TABLE 4.10 CONDITION FIELD

CND FIELD

MNEMONIC Dis Dis Dis Die Dis CONDITION
JNCA 0 0 0 0 0 CA =0
JCA 0 0 0 0 1 CA = 1
JNCB 0 0 0 1 0 CB =0
JCB 0 0 0 1 1 CB = 1
JNZA 0 0 1 0 0 ZA = 0
JZA 0 0 1 0 1 ZA = 1
JNZB 0 0 1 1 0 28 =0
JZB 0 0 1 1 1 2B = 1
JNOVAD 0 1 0 0 0 OVAQ = 0
JOVAD 0 1 0 0 1 OVAO = 1
JNOVBO 0 1 0 1 0 OvV80 = 0
JOVBO 0 1 0 1 1 OVBO = 1
JNOVA1 0 1 1 0 0 OVA1 = 0
JOVA1 0 1 1 0 1 OVA1 = 1
JNOVB1 0 1 1 1 0 OVB1 = 0
JOVB1 0 1 1 1 1 OVB1 = 1
JNSAO 1 0 0 0 0 SAO = 0
JSAQ 1 0 0 0 1 SAQ = 1
JNSBO 1 0 0 1 0 SB0 = 0
JSBO 1 0 0 1 1 SB0 = 1
JNSA1 1 0 1 0 0 SA1 = 0
JSA1 1 0 1 0 1 ~ GAl = 1
JNSB1 ] 0 1 1 0 SB1 = 0
JSB1 1 0 1 1 1 T 881 = 1
JDPLO 1 1 0 0 0 DPL = 0
JOPLF 1 1 0 0 1 DPL = F (HEX)
JNSIAK 1 1 0 1 0 SIACK = 0
JSIAK 1 1 0 1 1 SIACK = 1
JNSOAK 1 1 1 0 0 SOACK = 0
JSOAK 1 1 1 0 1 ~ SO ACK = 1
JNRQOM 1 1 1 1 0 RQM = 0
JRQM 1 1 1 1 1 RQM = 1

40



4.2.3 NA Field (Next Address)

This field specifies the address to which the program
vectors (unless a conditional branch is not executed).

4.3 LDI Instruction

The LDI (Load Immediate) instruction is composed of two
fields other than the OP code, and is executed in the following
manner:

1) Data is output from the ID (Immediate Data) field, over the
internal data bus, to the register specified in the DST field.

2) The 0 bit of the ID field is output to the 0 bit of the IDB,
and bit 15 to bit 15 of the IDB.

4.3.1 1ID Field (Immediate Data)

This field contains the data to be transferred to the
register specified in the DST field.

4.3.2 DST Field (Destination)

This field specifies the register to which the data in the
ID field is to be loaded. The registers that can be used are the
same as those for the DST field of the OP/RT instruction (see
Table 4.8). Note that the @KLM and €@KLR specifications can be
used with the LDI instruction to perform a simultaneous load of
both multiplier input registers (one with immediate data, and the
other from either High RAM or ROM).

22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

11 1S «& 10 > 0 ost

FIGURE 4.5 LDI INSTRUCTION FORMAT

/* Load Immediate Data value onto Internal Data
Bus and store into register or memory */
EXAMPLE: LDI @A,1234H ; /* Load 1234H to Accumulator A */

FIGURE 4.6 LDI ASSEMBLY LANGUAGE INSTRUCTION FORMAT

41



5. Timing

The uPD7720A operates by a single-phase clock applied to the
CLK pin. The maximum frequency is 8 MHz, which gives a 250 ns
instruction cycle. Refer to the electrical specifications in the
data sheet for more detailed clock timing information.

5.1 Serial Data Timing

The serial I/O shift clock (SCK) can be input asynchronously
with respect to the system clock (CLK). Refer to sections 3,23
(SI), and 3.24 (S0) for detailed information on serial I/0
operation (maximum frequency is 2 MHz),

5.2 Reset Timing (RST)

Each RST input must be continued over 3 clock cycles to
initialize the system. The RST input initializes the following
to zero:

1) PC 4) DRQ

2) Flags (for AccA and AccB) 5) SORQ

3) SR Register (including EI) 6) Serial shift bit count

5.3 Interrupt

The interrupt input is rising edge sensed. For a rising
edge to be accepted as a valid interrupt, the internal interrupt
facilities must be enabled prior to that rising edge (EI status
bit = 1), Interrupt must be held high for at least 8 clock
cycles after the rising edge. Refer to section 3.25 for more
information on the interrupt function.,

5.4 I/0 vs. Instructions

Since serial and parallel I/0 may be performed
asynchronously with respect to the system clock, it is essential
to test the flag(s) associated with the I/0 operation(s) to be
performed, in order to assure proper operation, i.e. having data
in the right place at the right time. This is done by the use of
the conditional branch instructions such as JRQM, JNSIAK, JSOAK,
etc. These flag test instructions should be performed, even if
SCK, DACK/, Cs/, RD/, WR/, etc. are synchronized with CLK.
Assumptions about data being available after executing a certain
number of instructions, without using the flag test instructions,
are to be avoided.

42



6. TYPICAL SYSTEM CONFIGURATIONS

The uPD7720A is a single chip microcomputer, However, it is
also designed to operate as a complex peripheral to a
microprocessor.

Three configurations are shown in Figures 6,1-2-3, The
first is with the SPI operating as a complex peripheral,
inputting and outputting data serially as well as communicating
on a microcomputer system parallel bus,

The second example shows two uPD7720As in a cascaded
configuration. The SPIs could also be attached to a
microcomputer bus if desired, but it is not shown in this
example., This type of configuration is good for systems in which
data rates exceed the capability of one SPI to process the
allocated function completely within the available time.

The last configuration is a stand-alone application example.

HOST MEMORY
CPU

J

L
SYSTEMBUS ) ﬁ -
A SIGNAL PROCESSING E
SYSTEM USING SPI{s) | A/D CRE DRQ 1
AS A COMPLEX COMPUTER SPI e DMA

PERIPHERAL DACK 1 CONTROLLER

| D/A [pe——1t50.

DRQ (n)

A/D S.1. L
SPI DACK (n)

D/A S.0.

FIGURE 6.1

43



CLOCK

GENERATOR
ANALOG IN [ ] scE_ |
SCK
. SORQ}=={>O-w={ STEN s
0.F. = AD sP1 Pl ora — Re —p Arm..?s
STER sO s SORQ
SUEN
c&::.‘;‘é,_ A SIGNAL PROCESSING SYSTEM USING
CASCADED SPis & SERIAL COMMUNICATION.
FIGURE 6,2
PRODUCT EXAMPLE
]
SENSOR P ., USING THE uPD7720 -
DATA & . .
micropHoNe [ o o ap bl 5P laed Orepiay 05 .
THERAMAL (FFT) : .
PRESSURE CONTROL . 2% '.... :
LIGHT et Yo, 00 R
FREQ ——a=
BANDLIMITING

ILTER
FILEE SPECTRUM ANALYSIS SYSTEM

FIGURE 6.3

44



APPENDIX 1 ASSEMBLY LANGUAGE INSTRUCTION EXAMPLES

EXAMPLE A: Biquadratic Filter

The second order IIR digital filter, commonly known as a
biquadratic, or "biquad" filter, is generally indicated by the
signal flow diagram shown in Figure A-l.1., It uses two delay
elements, the output of each one having both a feedback and a
feed-forward coefficient. The transfer function, H(Z), is also
defined in the figure. In a biquad filter, the coefficients Al
and Bl can have absolute values greater than 1. 1In fact, they
will typically be as high as 2 for poles and zeroces located
within the unit circle on the Z-plane. However, since the SPI is
best thought of as having a dynamic range from -1 to almost +1,
the configuration shown in figure A-1.2 will be used, in which
the feedback and feed-forward products from the first delay tap
will be added twice, with the coefficients stored as half of the
actual desired values.,

The usage of memory for the biquad filter subroutine is
fairly straightforward. The two delay taps are kept in two
memory locations, in the same "column® in adjacent "rows", for
example locations 00 and 10H, To switch back and forth between
the two delay tap locations within the subroutine, the M1
mnemonic is used to modify the upper three bits of the data RAM
pointer.

The coefficients are stored in an equally simple manner.
They will each be used in turn as the subroutine needs them, and
so are stored in sequentially descending locations in the data
ROM. As each one is used, the RPDEC mnemonic is used to modify
the data ROM pointer to point to the next coefficient, ready for
when it will be used.

The biquad filter subroutine, BIQFIL, occupies 11 locations
in instruction ROM, executes in 2.5 usec (2.75 if an overflow
occurs), takes the input sample as an input in the A accumulator,
returns the filtered output sample in the A accumulator, and
assumes that the DP (Data RAM Pointer) is pointing to the first
delay tap, and the RP (Data ROM Pointer) is pointing to the first
coefficient. The flow diagram is shown in figure A-1.3. The
delay taps occupy two RAM locations, and the coefficients occupy
five ROM locations. The code is as follows:

BIQFIL: (0) 5 MOV @KLR,A /* K=W(I), L=ANO */
XOR ACCA,IDB /* CLEAR A FOR SUM OF PRODUCTS */

RPDEC ¢ /* POINT TO NEXT COEFFICIENT */

oP MOV @KLR,MEM /* K=W(I-1), L=BNl */

ADD ACCA,M /* A=W(I) * ANO */

RPDEC : /* POINT TO NEXT COEFFICIENT */

0) 4 MOV €B,K /* SAVE W(I-1l) (NEW W(I-2)) */

ADD ACCA,M /* A=W(I)*ANO + W(I-1)*BNl */

M1 ; /* POINT TO SECOND DELAY TAP */

45



OP MOV @KLR,MEM /*
ADD ACCA,M
RPDEC : /*
OP MOV @L,RO /*
ADD ACCA,M /*
RPDEC 1 /*
JNOVAL $+2 : /%
OP MOV @A,SGN ; /*
OP MOV @TR,A /*
ADD ACCA,M /*
Ml ; /*
OP MOV @KLR,MEM /*
RPDEC : /*
OP MOV @MEM,TR /*
ADD ACCA,M /*
M1 ; /*
OP MOV @MEM,B /*
ADD ACCA,M /*
M1 /*
RET ; /*

46

K=W(I-2), L=BN2 */
* A=W(I)*ANO + 2*W(I-1)*BNl */
POINT TO NEXT COEFFICIENT */

L=AN2 */
A=W(I) *ANO + 2*W(I-1)*BNl

+ W(I-2)*BN2 (NEW W(I-1l)) */
POINT TO NEXT COEFFICIENT */

IF NO OVERFLOW, SKIP NEXT */

IF OVERFLOW, GET SATURATION
VALUE */

SAVE NEW W(I-1) */
A=NEW W(I-1) + W(I-2)%*AN2 */
POINT TO FIRST DELAY TAP */

K=W(I-1), L=ANl */
POINT TO NEXT COEFFICIENT */
SET NEW W(I-1) */
A=NEW W(I-1l) + W(I-2)*AN2

+ W(I-1)*AN1 */
POINT TO SECOND DELAY TAP */
SET NEW W(I-2) */
A=NEW W(I-1) + W(I-2)*AN2

+ 2*W(I-1)*AN1 */
POINT TO FIRST DELAY TAP FOR

NEXT CALL TO THIS SUBROUTINE*/
RETURN FROM SUBROUTINE */



Xn (+)

8.

B

Q1+ 77,20
RO =78 27+ 8, 2°

FIGURE A-l1.1 BIQUAD FILTER SIGNAL FLOW DIAGRAM
AND TRANSFER FUNCTION

overflow
. n
Ane correction Wa

*—£;> Ya

Xn

\/

rrmenocs z ProesSesnmn

L]
'
1
!
’
'
'
]
)
1
|
1
L

A
J

FIGURE A-1.2 MODIFIED BIQUAD FILTER SIGNAL FLOW DIAGRAM

47



FIGURE A-1.3 MODIFIED BIQUAD FILTER FLOW CHART

K~=Xn
L= Auw
AccA Clear
RPDEC

¢

AccA—=XnxA,,
Ke=Wi.,
L"B"
RPDEC

)

AccA—=Xnx Ay +Wio, xB,,
AceB=Wio i (New Wi, )
DP= 1 X

}

AGC."‘X“‘AQ. +“‘I-l’ B"
+WiaixBy,

Ke=Wi.:

L‘-B"

RPDEC

:

ACCA“XD*A.. +2*Wi-|.8.|
+Wi 1 xByy (New WiL,)
L=An
RPDEC

NO

! YES

AccA — SON

2
TR=New Wi,
AccA=New Wi, +Wi_gx4a,,
DP=0X

b

K=Wi.
L‘-A"
RPDEC

T
)

AccA=New Wia, +Wio =,
Wi ‘A.|

RAM(OX) =sNew Wi,
DP=1X

)|
L
AccA~=New Wi, "'Wl-[ﬂhu
*WaiomA, «Wi.ixA,,
RAM(1X) @aNew W .,
DP=0X
DPDEC

48



EXAMPLE B: Sixty-four Biquad Filters

This example consists of an entire program (implicitly
included is the biquad filter subroutine, BIQFIL, shown in
Example A) that will perform 64 biquad filter sections, each one
cascading its output into the input of the next one. This will
show the use of memory space and pointer manipulation for
multiple filter sections, using a common filter subroutine,
initialization, RAM clearing, and I/0 technigques.

The data RAM memory map consists of 64 copies of the usage
for the biquad filter routine shown in Example A, Each filter
section uses two delay taps, one on top of the other within a
column. In each column, four sections' delay taps are stacked up
on top of each other (i.e. section A uses 00 and 10H, section B
uses 20H and 30H, C--40H and 50H, D--60B and 70H). This is
repeated for each of the 16 columns (section E would then use 018
and 11H, etc.).

The coefficient ROM again holds the filter coefficients,
five for each biquad filter section. Again, for each filter
section the five coefficients are stored in sequentially
descending locations in the order in which the filter subroutine
uses them. Section A's coefficients are in the top five ROM
locations, section B's are in the next lower five locations, etc.
This way, when one filter section is done, the ROM pointer will
be pointing to the first coefficient for the next section.

This example assumes linear l16-bit 2's complement serial
input data for each sample, as would be provided by a successive-
approximation A/D converter, and outputs linear 16-bit serial
data.

LDI @SR,0000H /* INITIALIZE STATUS REGISTER

16~-BIT SERIAL I/0, ETC. */

LDI @A,0000H ; /* DATA TO FILL (CLEAR) RAM */

LDI €B,007FH ; /* STARTING ADDRESS TOP OF RAM */

CLLOOP: OP MOV &DP,B ; /* ADDRESS TO RAM POINTER */

OP MOV @MEM,A /* DATA TO RAM (CLEAR LOCATION) */
DEC ACCB /* DECREMENT ADDRESS */

e

JNCB CLLOOP /* IF ADDRESS NOT < 0, LOOP */

-6

WAITIN: JNSIAK WAITIN /* WAIT FOR SERIAL INPUT ACK. */

s

LDI @DP,0000RH /* POINT TO FIRST FILTER SECTION */

e

LDI @RP,01FFH /* POINT TO TOP OF COEFFICIENTS */

1)

OP MOV @A,SIM /* GET SERIAL INPUT SAMPLE IN A */

“e

BIQUAD4: /* THIS LOOP WILL DO THE 4 FILTER
SECTIONS IN ONE COLUMN OF RAM,

49



OUTPUT:

CALL BIQFIL

OoP M2

CALL BIQFIL
OoP M6

CALL BIQFIL
op M2
CALL BIQFIL
OP M6
DPINC

JDPLO OUTPUT

JMP BIQUAD4
JSOAK ouTPUT

oP MOV @SoM,A

JMP WAITIN

e

-

e

e

e

e

-p

e

~e

/*

/*

/*
/*

/*
/*

/*

*

/*

/*
/*

/*

/*

50

POINT TO THE NEXT COLUMN, AND
LOOP UNTIL LAST COLUMN IS DONE*/

DO FIRST FILTER SECTION IN THIS
COLUMN (ADDRESSES 0X AND 1X) */

POINT TO SECOND FILTER SECTION

IN COLUMN (2X AND 3X) */
DO SECOND FILTER SECTION */
POINT TO THIRD FILTER SECTION

IN COLUMN (4X AND 5X) */
DO THIRD FILTER SECTION */
POINT TO FOURTH FILTER SECTION
IN COLUMN {6X AND 7X) */
DO FOURTH FILTER SECTION */
POINT TO FIRST SECTION AGAIN */
BUT POINT TO NEXT COLUMN */
IF WRAPPED AROUND TQ FIRST
COLUMN, DONE, DO OUTPUT */

ELSE, LOOP FOR NEXT COLUMN */

WAIT FOR SERIAL OUTPUT REGISTER
TO BE EMPTY. THIS STEP WOULD

BE UNNECESSARY IF SERIAL INPUT
AND OUTPUT ARE SYNCHRONIZED,
SINCE THERE IS THE WAIT FOR
SERIAL INPUT CODE AT WAITIN */

OUTPUT RESULT TO SERIAL OUTPUT
REGISTER */

JUMP BACK AND WAIT PFOR NEXT
INPUT SAMPLE */



EXAMPLE C: Transversal (FIR) Filter

This example shows a subroutine to execute a l6-tap
transversal (FIR) filter. It not only performs the sum=-of-
products, but it also performs the delay function by moving the
data through RAM at a rate of one location per sample. The entry
to the subroutine requires that the RAM Data Pointer (DP) be
pointing to the first location in the row of RAM (address 00, for
instance), which will also hold the current sample if this is the
first call to this subroutine, ROM Pointer (RP) be pointing to
the first coefficient, located at the top of the coefficient
table, Accumulator A holds either 0 or the partial sum of
products so far (if not the first call to the subroutine), and
Accumulator B also holds the current sample (if first call).

TRFIL: oP MOV @KLR,MEM; /* MOVE SAMPLE AND COEFFICIENT
TO MULTIPLIER INPUTS */

oP ADD ACCA,M /* ADD PRODUCT TO SUM */

MOV @MEM,B ; /* SAVE DELAYED SAMPLE HERE */

oP MOV @B,K /* RETRIEVE PRESENT SAMPLE
FROM MULT, INPUT FOR DELAY,
TO BE SAVED ON NEXT PASS */
RPDEC /* POINT TO NEXT COEFFICIENT*/

DPINC ; /* POINT TO NEXT DELAY TAP */
JDPLO $+2 ;3 /* IF END OF ROW, SKIP NEXT */
JMP TRFIL : /* BELSE, LOOP-NEXT SAMPLE */
oP Ml /* POINT TO NEXT ROW */

RET ; /* AND EXIT */

Note in the last statement that M1l is performed. This way,
a 32-tap filter can be performed using two adjacent rows simply
by calling TRFIL twice in a row, with no other instructions
necessary between the two calls., A 64-tap filter could be done
as follows: enter pointing to row 0 (address 00), CALL TRFIL;
CALL TRFIL; OP M2; CALL TRFIL; CALL TRFIL; OP M2;. After the
first call, DP will be pointing to row 1 for the second call.
After the second call, DP will be pointing to row 0 again, so M2
is used to point to row 2 for the third call, After the third
call, DP is pointing to row 3 for the fourth call, and after the
fourth call, DP is pointing to row 2 again, so M2 is used to
point to row 0 again for the next time through.

If the coefficients are to be stored in RAM, so that they
may either be downloaded from a host, or adaptively modified by
some error detection algorithm, this subroutine may be easily
changed to accomodate this requirement., The coefficients should
be stored in the upper half of RAM, in addresses that equal 40H
plus the addresses of the delay taps that they correspond to.
Then, all that needs to be done is to change the @KLR to €KLM to

51



do the multiplier double load, change the MOV @B,K to MOV @B,L to
retrieve the delayed sample from the multiplier input, and delete
the RPDEC, since the ROM Pointer is not used at all in this case,

52



EXAMPLE D: 32-Tap Transversal Filter

This example shows a simple section of code that performs a
32-tap FIR filter using the TRFIL subroutine presented in the
last example. The only requirement for this section of code is
that Accumulator A holds the present input sample as 16-bit
linear 2's complement data., This sample will be scaled by a
preset coefficient before being input to the filter itself.

OoP MOV @KLR,A

/*
/*

XOR ACCA,IDB /*

RPDEC : /*
OP MOV @NON,B

XOR ACCB,IDB; /*
OP ADD ACCB,M ; /*
OP MOV @MEM,B ; /*
CALL TRFIL : /%
CALL TRFIL : /*

POINT TO SCALAR VALUE */

LOAD MULTIPLIER INPUTS WITH
SCALAR AND INPUT SAMPLE */

CLEAR ACCUMULATOR A, TCO */
AND POINT TO FIRST
COEFFICIENT */
CLEAR ACCB */
SCALED INPUT VALUE TO B */
ALSO SAVE IT IN FIRST
MEMORY LOCATION TO SET UP
CALL TO TRFIL */
DO FIRST 16 TAPS */
DO SECOND 16 TAPS */

The exit condition from this section of code is that
accumulator A will hold the filtered output sample. The signal
flow diagram, including the input sample scaling, is shown in

Figure A-l.4.

Figure A-1.4 32-TAP TRANSVERSAL FILTER SIGNAL FLOW

Xa Xaoy Xna Xaoy Xn-n
x:_%' - AL 27 |f———ceemene . z-
Az Ay Amg
Yo
U T AN

53



EXAMPLE E: Use of Parallel 1/0

This example shows the use of the parallel I/O section.
Included in this example are the use of the Data Register (DR),
the use of the general-purpose parallel output pins (PO & P1),
and the use of the RQM flag in the Status Register. This example
loads six words (16-bits each) through the DR from a host,
storing them in the first six locations in RAM, calls some as-yet
undefined subroutine, then outputs two words of data back to the
host, from wherever the DP points to after the subroutine
executes, It also signals, in both the USF0 and USF1l flags and
the PO and Pl output pins, the state it is in.

/* INITIALIZE STATUS REGISTER
DR IN 16-BIT MODE, USF0/1
AND PO/]1 SIGNAL STATE O,

LDI @SR,0000H

-y

WAITING FOR INPUTS */

LDI @DP,0000H ; /* POINT TO WORK AREA IN RAM*/

LDI €&B,0005H ; /*¥ GET COUNT - 1 IN ACCB */

LDI @DR,0000H ; /* DUMMY LOAD TO SET RQM */

INPTLP: JRQM INPTLP ; /* WAIT FOR HOST TO INPUT */
OP MOV @MEM,DR /* MOVE INPUT TO RAM */

DEC ACCB /* DECREMENT COUNT */

DPINC ; /* POINT TO NEXT LOCATION */

JNZB INPTLP ; /* IF COUNT NOT 0, LOOP */

OP MOV @MEM,DRNF /* GET LAST INPUT VALUE, PUT
IT IN RAM, BUT DON'T SET

RQM, DONE GETTING INPUT */

DPCLR : /* DP = 00 FOR SUBRTN CALL */

CALL CRUNCH /* CALL SOME SUBROUTINE */

e

LDI @SR,2001H /* USFO/1 & PO/l SAY STATE 1,

-y

OQUTPUTTING TO HOST */

OP MOV @DR,MEM /* OUTPUT FIRST VALUE */

DPINC : /* POINT TO SECOND VALUE */

OUTPLP: JRQM OUTPLP ; /* WAIT FOR HOST TO TAKE IT */

OP MOV @DR,MEM ; /* OUTPUT SECOND VALUE */

OUT2LP: JRQM OUT2LP ; /* WAIT FOR HOST TO TAKE IT */
LDI @SR,4002H ; /* USFO/1 & PO/1 SAY STATE 2

14
ALL DONE */

54



EXAMPLE F: 32-Bit Math

This example shows some simple 32-bit math routines. It
takes the six words of data input by example E, and treats them
as three 32-bit words, stored low word first., The first (32-bit)
word is shifted left one bit, the second word is added, the third
word is subtracted, and the result is stored in the next two
locations in RAM, with the DP pointing to the first one (low word
of the 32-bit result). No overflow processing is done in this
example, Of particular importance here is the usage of the
feature of the carry flags, in which the carry flag of the unused
accumulator serves as an input to the ALU in the SHL1l, ADC, and
SBB operations.

CRUNCH: OP MOV @B,MEM /* GET LOW WORD OF FIRST */
AND ACCA,IDB /* CLEAR CA (ACCA CARRY) */
DPINC s /* POINT TO HIGH WORD */

OP MOV @A,MEM /* GET HIGH WORD OF FIRST */

DPINC : /* POINT TO LOW OF SECOND */
OP SHL1 ACCB : /* SHIFT ACCB LEFT ONE BIT,
CARRY FROM A (CLEARED IN
PIRST INSTR.) COMES IN */
oP SHL1 ACCA ; /* SHIFT ACCA LEFT, CARRY IN
ACCB'S OLD MSB */

(0) 4 ADD ACCB,RAM /* ADD LOW WORD OF SECOND 32-
BIT VALUE TO LOW WORD OF

RUNNING TOTAL */

DPINC ; /* POINT TO HIGH OF SECOND */

OP ADC ACCA,RAM /* ADD HIGH WORD OF SECOND */
DPINC ; /* POINT TO LOW OF THIRD */

oP SUB ACCB,RAM /* SUBTRACT LOW OF THIRD */
DPINC ; /* POINT TO HIGH OF THIRD */

oP SBB ACCA,RAM /* SUBTRACT HIGH OF THIRD */
DPINC : /* POINT TO LOW OF RESULT */

opP MOV @MEM,B /* SAVE LOW WORD OF RESULT */
DPINC POINT TO HIGH OF RESULT */

~
»

OP MOV @MEM,A /* SAVE HIGH WORD OF RESULT*/
DPDEC /* POINT TO LOW OF RESULT,
DESIRED EXIT CONDITION */

RET EXIT, RETURN FROM SUBRTN*/

~
»

55



APPENDIX 2 OVERFLOW PROCESSING THEORY DISCUSSION

As described in section 3.15, the OVAO, OVBO, SAQ0, SBO,
oval, OVBl, SaAl, and SBl flag bits can be used to correct
overflow errors after three consecutive operations, rather than
having to check overflow conditions after every operation. 1In
particular, the XXX0 bits can be used like ordinary overflow and
sign bits, and the XXX1 bits are the ones that allow the three
consecutive operations to be performed before overflow processing
must be done.

This Appendix is intended to provide an explanation of the
reasons for the unusual ways these XXXl bits are set and used.

First, consider what happens when an arithmetic operation
overflows. An overflow occurs when the operation produces a
result that is either larger than 7FFFH (this discussion deals
with 16-bit 2's complement arithmetic) or smaller than 8000H.
Looking at a specific example, suppose 5555H is added to itself.
In unsigned arithmetic, the correct answer is AAAAH., (Or, in 32
bit 2's complement arithmetic, (0000)5555 + (0000)5555 =
(0000)AAAA). However, in 16 bit 2's complement, AAAAH is a
negative number, and (0000)AAAAH is out of reach. Therefore,
adding two positive number has yielded a negative number for a
result, which is obviously incorrect. The overflow occurs when
crossing the "boundary” between 7FFFH and 8000H, This can be
also viewed as a boundary between different "segments®™ in a 32
bit universe, as shown in the following diagram:

(0001) 7FFF
tesesenee "pPositive® part of next higher 16-bit segment
(0001)0000

(0000) FFFF

ceosacsoes "Negative® part of next higher 16-bit segment
(0000) 8000

(0000) 7FFF

cessrsaee Positive part of "Base" 1l6-bit segment
(0000)0000

(FFFF)FFFF

ceesssese Negative part of "Base" 1l6-bit segment

(FFFF) 8000

(FFFF) 7FFF

tesencces "Positive" part of next lower 1l6-bit segment
(FFFF) 0000

(FFFE) FFFF

vesecccas "Negative® part of next lower 16-bit segment
(FFFE) 8000

e e S AP B Y P D D T S T G . G G A T Y W W W W T A G~ W W G G A G G D S T T -

With this 32-bit universe in mind, it is easier to picture
what happens when 16-bit arithmetic overflows. An overflow is
simply the crossing of the boundary between different segments of
the longer bit-length universe, to a result whose magnitude is
too large to be represented in the shorter bit-length universe,

56



as in (0000)5555 + (0000)5555 = (0000)AAAA. In this ezample, the
result is in the "negative® part of the next higher segment (in
the 32-bit universe), and is simply an incorrect (overflowed)
negative result in the 16-bit universe. If (FFFF)AAAB (the 2's
complement of (0000)5555) were then to be added, the result would
be (0000)5555. Of course, in the 16-bit universe, this would
again constitute an overflow condition, however the overall sum
would not be an overflow condition (the order of operation could
be reversed: 5555 + AAAB = 0000, 0000 + 5555 = 5555; with no
overflow occurring at all). This shows the very real possibility
that, in performing a sum of several numbers, there may be an
intermediate result that overflowed, while the overall result
does not represent an overflowed condition. Therefore, it is
desireable to have a way of detecting an overall overflow after
several operations, rather than having to make a decision based
on an overflow condition after every operation. The XXX1 flags
in the uPD7720 are intended to provide this information.

Of course, there is also the possibility of several
consecutive operations remaining in an overflow condition, or
even overflowing again in the same direction, with a result in a
segment that is two segments away from the "base® segment. The
overflow processing in the uPD7720 is designed to distinguish
these situations.

Now, to explain the way the OVA(B)1l and SA(B)l bits are set,
as described in 3.15. Everything is based on what happens when
an overflow occurs (OVA(B)0 is set, and a "segment boundary"® is
crossed). When the first overflow in a series of operations
occurs, both OVA(B)0 and OVA(B)l are set, and SA(B)0 and SA(B)1
are both set according to the sign of the (incorrect) result. If
in the course of several operations, the OVA(B)0 bit is set an
odd number of times, the result is obviously overflowed, since
there would need to be an even number of overflows in order to
cross back over any "boundaries®™ that were crossed in the first
place, to return to the original "base" segment. Therefore, the
cases of interest are those in which an even number of overflows
occur.

If the OVA(B)O bit is set twice in a row, there is no
overflow, since the boundary that was first crossed has been
crossed back over, into the base segment again. This is because
it would be impossible to cross the next boundary in the same
direction in the second operation (because it is too far away for
a single 16-bit 2's complement operation to reach).

However, if OVA(B)0 is set in the order 1-0-1 (or any number
of 0's in the middle, for that matter), then it is possible that
either the original boundary was crossed back over, with the
result returning to the base segment, or the next boundary in the
same direction was also crossed, going two segments away from the
base. The OVA(B)1l bit will distinguish these two cases by the
behavior of SA(B)0 and SA(B)l.

Since SA(B)0 indicates the (incorrect) sign of the result of
an (overflowed) operation, it will indicate the direction in
which an overflow occurred. 1If two positive numbers were added
(an overflow in the "up” direction), the sign will be negative if
there was an overflow. On the first occurrence of an overflow,
SA(B)1 will be set the same as SA(B)0. When the second overflow

57



occurs, the new SA(B)0 will be compared to SA(B)l, which saved
the sign of the first overflow result. If they are the same, the
overflow occurred in the same direction as the original overflow,
with a result two segments away from the base, so OVA(B)1l will
remain set. If SA(B)l1l and SA(B)0 are not the same, the overflow
occurred in the opposgite direction, therefore the boundary that
was originally crossed was crossed back over again, returning to
the base segment, and the overall result is not overflowed, so
OVA(B)1 will be cleared (even though OVA(B)0 will be set to
indicate that this individual operation did overflow).

As a result, it is possible to do three consecutive
operations before checking for overflows, at which time the
OVA(B)1 bit should be checked to determine if the sequence of
operations had on overall overflow result. Note that three
operations is the maximum number that can be performed with
certainty as to the validity of the flags, since it is possible
to get an invalid result in four operations as follows: First
operation overflows, second operation moves in the same
direction, third operation overflows in the same direction. So
far, the overflow bits will correctly indicate that there is an
overflowed condition in this particular direction (although there
is no indication, without keeping a history of the overflow bits,
that the overflow is by two segment boundaries' worth). Then,
the fourth operation moves in the opposite direction,
overflowing. Since the overflow bits only indicate an overflow
in the original direction (but not that there were two overflows'
worth), this new overflow operation will leave an indication that
there is no overflow, since it has crossed back over the boundary
that was most recently crossed. 1In other words, the behavior of
the flag bits at this point is identical to what happens when two
consecutive overflows, one out of the base segment and one back
into it, occur. There is no indication that the result is
actually one segment away from the base, having gone two segments
away, and come back one. For this reason, if there is no a
priori knowledge about whether or not the numbers involved in the
sequence of operations can produce such a doubly overflowed
result, overflow checking using the OVA(B)l bit should be
performed after every three operations, This practice is
illustrated in the examples in Appendix 1.

58



APPENDIX 3 SPI'S INTERNAL REPRESENTATION OF NUMBERS

All numbers used in multiplication are represented as fixed
point 2's complement 16-bit numbers. The most significant bit is
the sign bit, and the other 15 bits represent magnitude. The
radix point is always just to the left of the most significant
magnitude bit. Range: -1 =< n < 1l. One LSB is therefore equal
to 2 * =15, This is illustrated in the following table (in which
K=1LSB=1/(2 * 15) = 0.00003051757813):

HEX BASE 10 (n) NORMALIZED BASE 10 (nK)
7FFF 32767 0.9999694824
3666 iééé; 6:5.........
2000 "8192 0.25 "7
0002 2 0.0000610352
0001 1 0.0000305176
0000 0 0.0
FFFF -1 -0.0000305176
FFFE -2 ~0.0000610352
E000 -8192 —0.25 0
C000 -16384 -0.5 0T
8001 -32767 ~0.9999694824
8000 -32768 -1.0

This representation applies to the multiplier output
registers, M and N, in a similar fashion. Since two numbers are
being multiplied that each have 15 bits of magnitude, the product
will have 30 bits of magnitude. The M and N registers
concatenated provide 32 available bits. The MSB (MSB of M) is
the sign bit, and then the next 30 bits (the 15 remaining in M
and the most significant 15 bits of N) represent the magnitude
(in 2's complement form). The LSB of N is filled with a 0.

This format can lead to some initial confusion for someone
who wants to think of the numbers as integers, not fractions.
For example 0001 X 0001 = 00000002, because (2 © -15) X (2 * =15)
=2 ~ =30, Also, 4000H X 4000H = 20000000H, because 0.5 X 0.5 =
0.25 (1/2 X 1/2 = 1/4). 1If multiplied as integers, of course,
4000H X 4000E would be 10000000H, These are simply the results
of the 30 bit magnitude information being left-justified in a 31
bit field.

Note: multiplying 8000H X 8000H will lead to an error
condition, in which the M:N output will be 80000000H. This
occurs because -1 X -1 = +1, and +1 would have to be represented
by 7FFFFFFFH + 1, which overflows to 80000000H, i.e. +1 is one
LSB too large to be represented in this 2's complement notation,

59



